Automated Profile Inference with Language Model Agents
- URL: http://arxiv.org/abs/2505.12402v1
- Date: Sun, 18 May 2025 13:05:17 GMT
- Title: Automated Profile Inference with Language Model Agents
- Authors: Yuntao Du, Zitao Li, Bolin Ding, Yaliang Li, Hanshen Xiao, Jingren Zhou, Ninghui Li,
- Abstract summary: We study a new threat that LLMs pose to online pseudonymity, called automated profile inference.<n>An adversary can instruct LLMs to automatically scrape and extract sensitive personal attributes from publicly visible user activities on pseudonymous platforms.<n>We introduce an automated profiling framework called AutoProfiler to assess the feasibility of such threats in real-world scenarios.
- Score: 67.32226960040514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Impressive progress has been made in automated problem-solving by the collaboration of large language models (LLMs) based agents. However, these automated capabilities also open avenues for malicious applications. In this paper, we study a new threat that LLMs pose to online pseudonymity, called automated profile inference, where an adversary can instruct LLMs to automatically scrape and extract sensitive personal attributes from publicly visible user activities on pseudonymous platforms. We also introduce an automated profiling framework called AutoProfiler to assess the feasibility of such threats in real-world scenarios. AutoProfiler consists of four specialized LLM agents, who work collaboratively to collect and process user online activities and generate a profile with extracted personal information. Experimental results on two real-world datasets and one synthetic dataset demonstrate that AutoProfiler is highly effective and efficient, and can be easily deployed on a web scale. We demonstrate that the inferred attributes are both sensitive and identifiable, posing significant risks of privacy breaches, such as de-anonymization and sensitive information leakage. Additionally, we explore mitigation strategies from different perspectives and advocate for increased public awareness of this emerging privacy threat to online pseudonymity.
Related papers
- AgentStealth: Reinforcing Large Language Model for Anonymizing User-generated Text [8.758843436588297]
AgentStealth is a self-reinforcing language model for text anonymization.<n>We show that our method outperforms baselines in both anonymization effectiveness and utility.<n>Our lightweight design supports direct deployment on edge devices, avoiding cloud reliance and communication-based privacy risks.
arXiv Detail & Related papers (2025-06-26T02:48:16Z) - Self-Refining Language Model Anonymizers via Adversarial Distillation [49.17383264812234]
Large language models (LLMs) are increasingly used in sensitive domains, where their ability to infer personal data poses emerging privacy risks.<n>We introduce SElf-refining Anonymization with Language model (SEAL), a novel distillation framework for training small language models (SLMs) to perform effective anonymization.
arXiv Detail & Related papers (2025-06-02T08:21:27Z) - Augmenting Anonymized Data with AI: Exploring the Feasibility and Limitations of Large Language Models in Data Enrichment [3.459382629188014]
Large Language Models (LLMs) have demonstrated advanced capabilities in both text generation and comprehension.<n>Their application to data archives might facilitate the privatization of sensitive information about the data subjects.<n>This data, if not safeguarded, may bring privacy risks in terms of both disclosure and identification.
arXiv Detail & Related papers (2025-04-03T13:26:59Z) - Personalized Attacks of Social Engineering in Multi-turn Conversations -- LLM Agents for Simulation and Detection [19.625518218365382]
Social engineering (SE) attacks on social media platforms pose a significant risk.<n>We propose an LLM-agentic framework, SE-VSim, to simulate SE attack mechanisms by generating multi-turn conversations.<n>We present a proof of concept, SE-OmniGuard, to offer personalized protection to users by leveraging prior knowledge of the victims personality.
arXiv Detail & Related papers (2025-03-18T19:14:44Z) - AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents [75.85554113398626]
We introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of data minimization''<n>Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents.
arXiv Detail & Related papers (2025-03-12T19:30:31Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Imprompter: Tricking LLM Agents into Improper Tool Use [35.255462653237885]
Large Language Model (LLM) Agents are an emerging computing paradigm that blends generative machine learning with tools such as code interpreters, web browsing, email, and more generally, external resources.
We contribute to the security foundations of agent-based systems and surface a new class of automatically computed obfuscated adversarial prompt attacks.
arXiv Detail & Related papers (2024-10-19T01:00:57Z) - Evaluating LLM-based Personal Information Extraction and Countermeasures [63.91918057570824]
Large language model (LLM) based personal information extraction can be benchmarked.<n>LLM can be misused by attackers to accurately extract various personal information from personal profiles.<n> prompt injection can defend against strong LLM-based attacks, reducing the attack to less effective traditional ones.
arXiv Detail & Related papers (2024-08-14T04:49:30Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Large Language Models are Advanced Anonymizers [2.9373912230684565]
Recent privacy research on large language models (LLMs) has shown that they achieve near-human-level performance at inferring personal data from online texts.<n>Existing text anonymization methods are currently lacking behind regulatory requirements and adversarial threats.<n>We present a new setting for evaluating anonymization in the face of adversarial LLM inferences.
arXiv Detail & Related papers (2024-02-21T14:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.