AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
- URL: http://arxiv.org/abs/2503.09780v2
- Date: Fri, 16 May 2025 22:47:55 GMT
- Title: AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
- Authors: Arman Zharmagambetov, Chuan Guo, Ivan Evtimov, Maya Pavlova, Ruslan Salakhutdinov, Kamalika Chaudhuri,
- Abstract summary: We introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of data minimization''<n>Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents.
- Score: 75.85554113398626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous AI agents that can follow instructions and perform complex multi-step tasks have tremendous potential to boost human productivity. However, to perform many of these tasks, the agents need access to personal information from their users, raising the question of whether they are capable of using it appropriately. In this work, we introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of ``data minimization''. For the purposes of our benchmark, data minimization means that the agent uses a piece of potentially sensitive information only if it is ``necessary'' to complete a particular task. Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information, and show that they are prone to inadvertent use of unnecessary sensitive information. We also propose a prompting-based defense that reduces information leakage, and demonstrate that our end-to-end benchmarking provides a more realistic measure than probing LLMs about privacy. Our results highlight that further research is needed to develop AI agents that can prioritize data minimization at inference time.
Related papers
- WebSailor: Navigating Super-human Reasoning for Web Agent [72.5231321118689]
WebSailor is a complete post-training methodology designed to instill this crucial capability.<n>Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation.<n>WebSailor significantly outperforms all opensource agents in complex information-seeking tasks.
arXiv Detail & Related papers (2025-07-03T12:59:07Z) - The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
Large Language Model (LLM) agents represent a promising shift in human-AI interaction.<n>We highlight a critical usability gap in high-demand, mass-market applications.
arXiv Detail & Related papers (2025-05-23T11:40:58Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks [16.443149180969776]
Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks.<n>Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users.<n>Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks.
arXiv Detail & Related papers (2025-01-16T08:06:02Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.<n>Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.<n>We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
arXiv Detail & Related papers (2025-01-12T04:17:39Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-V is a framework to generate a dataset of questions that mimic customer queries.<n>Our synthetic data can improve agent performance on actual customer queries.
arXiv Detail & Related papers (2024-11-28T19:36:11Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.<n>AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.<n>First, we collect real-world human activities to generate proactive task predictions.<n>These predictions are labeled by human annotators as either accepted or rejected.<n>The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - EIA: Environmental Injection Attack on Generalist Web Agents for Privacy Leakage [40.82238259404402]
We conduct the first study on the privacy risks of generalist web agents in adversarial environments.<n>First, we present a realistic threat model for attacks on the website, where we consider two adversarial targets: stealing users' specific PII or the entire user request.<n>We collect 177 action steps that involve diverse PII categories on realistic websites from the Mind2Web, and conduct experiments using one of the most capable generalist web agent frameworks to date.
arXiv Detail & Related papers (2024-09-17T15:49:44Z) - Here's Charlie! Realising the Semantic Web vision of Agents in the age of LLMs [0.0]
This paper presents our research towards a near-term future in which legal entities can entrust semi-autonomous AI-driven agents to carry out online interactions on their behalf.
arXiv Detail & Related papers (2024-09-03T10:32:47Z) - Air Gap: Protecting Privacy-Conscious Conversational Agents [44.04662124191715]
We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand.
We introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task.
arXiv Detail & Related papers (2024-05-08T16:12:45Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - MobileAgent: enhancing mobile control via human-machine interaction and
SOP integration [0.0]
Large Language Models (LLMs) are now capable of automating mobile device operations for users.
Privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation.
We have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs.
Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks.
arXiv Detail & Related papers (2024-01-04T03:44:42Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
Humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world.
Recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities.
We introduce KwaiAgents, a generalized information-seeking agent system based on LLMs.
arXiv Detail & Related papers (2023-12-08T08:11:11Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
Video anomaly detection (VAD) without human monitoring is a complex computer vision task.
Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information.
We propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner.
arXiv Detail & Related papers (2023-08-21T22:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.