Table-R1: Region-based Reinforcement Learning for Table Understanding
- URL: http://arxiv.org/abs/2505.12415v1
- Date: Sun, 18 May 2025 13:40:18 GMT
- Title: Table-R1: Region-based Reinforcement Learning for Table Understanding
- Authors: Zhenhe Wu, Jian Yang, Jiaheng Liu, Xianjie Wu, Changzai Pan, Jie Zhang, Yu Zhao, Shuangyong Song, Yongxiang Li, Zhoujun Li,
- Abstract summary: We introduce region-based Table-R1, a novel reinforcement learning approach that enhances table understanding.<n>Our method employs Region-Enhanced Supervised Fine-Tuning (RE-SFT) to guide models in identifying relevant table regions.<n>Experiments show that Table-R1 achieves an average performance improvement of 14.36 points across multiple base models.
- Score: 34.213738690633896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tables present unique challenges for language models due to their structured row-column interactions, necessitating specialized approaches for effective comprehension. While large language models (LLMs) have demonstrated potential in table reasoning through prompting and techniques like chain-of-thought (CoT) and program-of-thought (PoT), optimizing their performance for table question answering remains underexplored. In this paper, we introduce region-based Table-R1, a novel reinforcement learning approach that enhances LLM table understanding by integrating region evidence into reasoning steps. Our method employs Region-Enhanced Supervised Fine-Tuning (RE-SFT) to guide models in identifying relevant table regions before generating answers, incorporating textual, symbolic, and program-based reasoning. Additionally, Table-Aware Group Relative Policy Optimization (TARPO) introduces a mixed reward system to dynamically balance region accuracy and answer correctness, with decaying region rewards and consistency penalties to align reasoning steps. Experiments show that Table-R1 achieves an average performance improvement of 14.36 points across multiple base models on three benchmark datasets, even outperforming baseline models with ten times the parameters, while TARPO reduces response token consumption by 67.5% compared to GRPO, significantly advancing LLM capabilities in efficient tabular reasoning.
Related papers
- Table-r1: Self-supervised and Reinforcement Learning for Program-based Table Reasoning in Small Language Models [52.94091440130039]
Table reasoning (TR) requires structured reasoning over semi-structured data.<n>Small language models (SLMs) have limited capacity compared to large LMs (LLMs, e.g., GPT-4o)<n>We propose program-based TR (P-TR), which circumvents key limitations of text-based TR (T-TR) by generating executable programs.<n>Experiments on four TR benchmarks demonstrate that Table-r1 outperforms all SLM-based methods.
arXiv Detail & Related papers (2025-06-06T14:52:19Z) - LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - Reasoning-Table: Exploring Reinforcement Learning for Table Reasoning [24.624844234355734]
Reasoning-Table is the first application of reinforcement learning (RL) to table reasoning, achieving state-of-the-art performance.<n> Reasoning-Table emerges as a robust table reasoning large language model, surpassing larger proprietary models like Claude-3.7-Sonnet by 4.0%.
arXiv Detail & Related papers (2025-06-02T14:18:09Z) - Table-R1: Inference-Time Scaling for Table Reasoning [25.481170375825812]
We develop and evaluate two post-training strategies to enable inference-time scaling.<n>For distillation, we introduce a large-scale dataset of reasoning traces generated by DeepSeek-R1.<n>For RLVR, we propose task-specific verifiable reward functions and apply the GRPO algorithm to obtain the Table-R1-Zero model.
arXiv Detail & Related papers (2025-05-29T16:28:50Z) - Towards Better Understanding Table Instruction Tuning: Decoupling the Effects from Data versus Models [62.47618742274461]
We fine-tune base models from the Mistral, OLMo, and Phi families on existing public training datasets.<n>Our replication achieves performance on par with or surpassing existing table LLMs.<n>We decouple the contributions of training data and the base model, providing insight into their individual impacts.
arXiv Detail & Related papers (2025-01-24T18:50:26Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.<n>TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.<n>Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning) is a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions.
By utilizing only a small subset of relevant data from the table, ALTER achieves outstanding performance on table-based reasoning benchmarks.
arXiv Detail & Related papers (2024-07-03T12:34:45Z) - LORE++: Logical Location Regression Network for Table Structure
Recognition with Pre-training [45.80561537971478]
Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats.
We model TSR as a logical location regression problem and propose a new TSR framework called LORE.
Our proposed LORE is conceptually simpler, easier to train, and more accurate than other paradigms of TSR.
arXiv Detail & Related papers (2024-01-03T03:14:55Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.