LLM-Symbolic Integration for Robust Temporal Tabular Reasoning
- URL: http://arxiv.org/abs/2506.05746v1
- Date: Fri, 06 Jun 2025 05:14:04 GMT
- Title: LLM-Symbolic Integration for Robust Temporal Tabular Reasoning
- Authors: Atharv Kulkarni, Kushagra Dixit, Vivek Srikumar, Dan Roth, Vivek Gupta,
- Abstract summary: We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
- Score: 69.27153114778748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal tabular question answering presents a significant challenge for Large Language Models (LLMs), requiring robust reasoning over structured data, which is a task where traditional prompting methods often fall short. These methods face challenges such as memorization, sensitivity to table size, and reduced performance on complex queries. To overcome these limitations, we introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations, alongside a symbolic intermediate representation that transforms tables into database schemas. This structured approach allows LLMs to generate and execute SQL queries, enhancing generalization and mitigating biases. By incorporating adaptive few-shot prompting with contextually tailored examples, our method achieves superior robustness, scalability, and performance. Experimental results consistently highlight improvements across key challenges, setting a new benchmark for robust temporal reasoning with LLMs.
Related papers
- Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Multimodal Tabular Reasoning with Privileged Structured Information [67.40011423365712]
We introduce TabUlar Reasoning with Bridged infOrmation (sc Turbo)<n>sc Turbo benefits from a structure-aware reasoning trace generator based on DeepSeek-R1.<n>sc Turbo achieves state-of-the-art performance ($+7.2%$ vs. previous SOTA) across multiple datasets.
arXiv Detail & Related papers (2025-06-04T15:46:30Z) - Automated Text-to-Table for Reasoning-Intensive Table QA: Pipeline Design and Benchmarking Insights [45.5276155343796]
We propose an automated generation pipeline AutoT2T that transforms mathematical word problems into table-based reasoning tasks.<n>The pipeline can generate multiple variants of a table for the same reasoning problem, including noisy versions to support robustness evaluation.<n> Experimental analyses through AutoT2T and TabularGSM reveal that the tight coupling between reasoning and retrieval or identification processes is a key factor underlying the failure of LLMs in complex Table QA tasks.
arXiv Detail & Related papers (2025-05-26T06:24:31Z) - NeedleInATable: Exploring Long-Context Capability of Large Language Models towards Long-Structured Tables [32.9031799179503]
textscNeedleInATable (NIAT) treats each table cell as a needle'' and requires models to extract the target cell based on cell locations or lookup questions.<n>Our data, code and models will be released to facilitate future research.
arXiv Detail & Related papers (2025-04-09T03:46:56Z) - Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB [44.057784044659726]
Large language models (LLMs) have made it easier to prototype such retrieval and reasoning data pipelines.<n>This often involves orchestrating data systems, managing data movement, and handling low-level details.<n>We introduce FlockMTL: an extension for abstractions that integrates deeply LLM capabilities and retrieval-augmented generation.
arXiv Detail & Related papers (2025-04-01T19:48:17Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.<n>TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.<n>Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - NormTab: Improving Symbolic Reasoning in LLMs Through Tabular Data Normalization [6.253771639590562]
We introduce NormTab, a framework aimed at enhancing the symbolic reasoning performance of Large Language Models (LLMs) by normalizing web tables.<n>We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data.<n>Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance.
arXiv Detail & Related papers (2024-06-25T22:40:03Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.