SGDPO: Self-Guided Direct Preference Optimization for Language Model Alignment
- URL: http://arxiv.org/abs/2505.12435v1
- Date: Sun, 18 May 2025 14:19:23 GMT
- Title: SGDPO: Self-Guided Direct Preference Optimization for Language Model Alignment
- Authors: Wenqiao Zhu, Ji Liu, Lulu Wang, Jun Wu, Yulun Zhang,
- Abstract summary: We propose a novel Self-Guided Direct Preference Optimization algorithm, i.e., SGDPO, which incorporates a pilot term to steer the gradient flow during the optimization process.<n>We provide a detailed theoretical analysis of our proposed method and elucidate its operational mechanism.
- Score: 46.55132297735257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Preference Optimization (DPO) is broadly utilized for aligning Large Language Models (LLMs) with human values because of its flexibility. Despite its effectiveness, it has been observed that the capability of DPO to generate human-preferred response is limited and the results of DPO are far from resilient. To address these limitations, in this paper we propose a novel Self-Guided Direct Preference Optimization algorithm, i.e., SGDPO, which incorporates a pilot term to steer the gradient flow during the optimization process, allowing for fine-grained control over the updates of chosen and rejected rewards. We provide a detailed theoretical analysis of our proposed method and elucidate its operational mechanism. Furthermore, we conduct comprehensive experiments on various models and benchmarks. The extensive experimental results demonstrate the consistency between the empirical results and our theoretical analysis and confirm the effectiveness of our proposed approach (up to 9.19% higher score).
Related papers
- Stable Preference Optimization for LLMs: A Bilevel Approach Beyond Direct Preference Optimization [2.384797824772941]
We present a comprehensive analysis of DPO's dynamics from a probability evolution perspective.<n>We propose a theoretically grounded bilevel optimization framework that tightly integrate supervised fine-tuning with an enhanced DPO objective a.k.a. stable preference optimization.
arXiv Detail & Related papers (2025-07-10T12:57:39Z) - Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - ASPO: Adaptive Sentence-Level Preference Optimization for Fine-Grained Multimodal Reasoning [14.034412856423529]
Direct Preference Optimization (DPO) has gained attention for its simplicity and computational efficiency in aligning large language models (LLMs)<n>Recent advancements have extended DPO to multimodal scenarios, achieving strong performance.<n>Traditional DPO relies on binary preference optimization, rewarding or penalizing entire responses without considering fine-grained segment correctness.<n>We propose Adaptive Sentence-level Preference Optimization (ASPO), which evaluates individual sentences for more precise preference optimization.
arXiv Detail & Related papers (2025-05-25T11:33:08Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Gradient Imbalance in Direct Preference Optimization [26.964127989679596]
We propose Balanced-DPO, a simple yet effective modification to the DPO objective that introduces a computationally efficient gradient reweighting mechanism.<n>Our experiments demonstrate the effectiveness of Balanced-DPO, validating the theoretical findings and confirming that addressing gradient imbalance is key to improving DPO's performance.
arXiv Detail & Related papers (2025-02-28T08:47:03Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.