Learning to Play Like Humans: A Framework for LLM Adaptation in Interactive Fiction Games
- URL: http://arxiv.org/abs/2505.12439v1
- Date: Sun, 18 May 2025 14:21:56 GMT
- Title: Learning to Play Like Humans: A Framework for LLM Adaptation in Interactive Fiction Games
- Authors: Jinming Zhang, Yunfei Long,
- Abstract summary: Interactive Fiction games (IF games) are where players interact through natural language commands.<n>This work presents a cognitively inspired framework that guides Large Language Models (LLMs) to learn and play IF games systematically.
- Score: 8.06073345741722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive Fiction games (IF games) are where players interact through natural language commands. While recent advances in Artificial Intelligence agents have reignited interest in IF games as a domain for studying decision-making, existing approaches prioritize task-specific performance metrics over human-like comprehension of narrative context and gameplay logic. This work presents a cognitively inspired framework that guides Large Language Models (LLMs) to learn and play IF games systematically. Our proposed **L**earning to **P**lay **L**ike **H**umans (LPLH) framework integrates three key components: (1) structured map building to capture spatial and narrative relationships, (2) action learning to identify context-appropriate commands, and (3) feedback-driven experience analysis to refine decision-making over time. By aligning LLMs-based agents' behavior with narrative intent and commonsense constraints, LPLH moves beyond purely exploratory strategies to deliver more interpretable, human-like performance. Crucially, this approach draws on cognitive science principles to more closely simulate how human players read, interpret, and respond within narrative worlds. As a result, LPLH reframes the IF games challenge as a learning problem for LLMs-based agents, offering a new path toward robust, context-aware gameplay in complex text-based environments.
Related papers
- Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions [55.2480439325792]
Role-playing games (RPG) are games in which players interact with one another to create narratives.<n>This emerging form of shared narrative, primarily oral, is receiving increasing attention.<n>In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session.
arXiv Detail & Related papers (2025-03-26T15:10:47Z) - TextGames: Learning to Self-Play Text-Based Puzzle Games via Language Model Reasoning [26.680686158061192]
Reasoning is a fundamental capability of large language models (LLMs)<n>This paper introduces TextGames, a benchmark specifically crafted to assess LLMs through demanding text-based games.<n>Our findings reveal that although LLMs exhibit proficiency in addressing most easy and medium-level problems, they face significant challenges with more difficult tasks.
arXiv Detail & Related papers (2025-02-25T18:26:48Z) - Verbalized Bayesian Persuasion [54.55974023595722]
Information design (ID) explores how a sender influence the optimal behavior of receivers to achieve specific objectives.<n>This work proposes a verbalized framework in Bayesian persuasion (BP), which extends classic BP to real-world games involving human dialogues for the first time.<n> Numerical experiments in dialogue scenarios, such as recommendation letters, courtroom interactions, and law enforcement, validate that our framework can both reproduce theoretical results in classic BP and discover effective persuasion strategies.
arXiv Detail & Related papers (2025-02-03T18:20:10Z) - Evaluating Creativity and Deception in Large Language Models: A Simulation Framework for Multi-Agent Balderdash [6.65572931991284]
Large Language Models (LLMs) have shown impressive capabilities in complex tasks and interactive environments.
This paper introduces a simulation framework utilizing the game Balderdash to evaluate both the creativity and logical reasoning of LLMs.
arXiv Detail & Related papers (2024-11-15T18:42:48Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques.
We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading (MPRC) tasks.
arXiv Detail & Related papers (2020-10-05T23:09:20Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
Text-based computer games describe their world to the player through natural language and expect the player to interact with the game using text.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents.
arXiv Detail & Related papers (2020-01-24T03:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.