High-Dimensional Dynamic Covariance Models with Random Forests
- URL: http://arxiv.org/abs/2505.12444v1
- Date: Sun, 18 May 2025 14:33:33 GMT
- Title: High-Dimensional Dynamic Covariance Models with Random Forests
- Authors: Shuguang Yu, Fan Zhou, Yingjie Zhang, Ziqi Chen, Hongtu Zhu,
- Abstract summary: This paper introduces a novel nonparametric method for estimating high-dimensional dynamic covariance matrices.<n>We leverage random forests and support robust theoretical guarantees.<n>Results hold uniformly across a range of conditioning variables.
- Score: 13.795750476724274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel nonparametric method for estimating high-dimensional dynamic covariance matrices with multiple conditioning covariates, leveraging random forests and supported by robust theoretical guarantees. Unlike traditional static methods, our dynamic nonparametric covariance models effectively capture distributional heterogeneity. Furthermore, unlike kernel-smoothing methods, which are restricted to a single conditioning covariate, our approach accommodates multiple covariates in a fully nonparametric framework. To the best of our knowledge, this is the first method to use random forests for estimating high-dimensional dynamic covariance matrices. In high-dimensional settings, we establish uniform consistency theory, providing nonasymptotic error rates and model selection properties, even when the response dimension grows sub-exponentially with the sample size. These results hold uniformly across a range of conditioning variables. The method's effectiveness is demonstrated through simulations and a stock dataset analysis, highlighting its ability to model complex dynamics in high-dimensional scenarios.
Related papers
- Symmetry-Preserving Diffusion Models via Target Symmetrization [43.83899968118655]
We propose a novel approach that enforces equivariance through a symmetrized loss function.<n>Our method uses Monte Carlo sampling to estimate the average, incurring minimal computational overhead.<n> Experiments show improved sample quality compared to existing methods.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - Principled model selection for stochastic dynamics [0.0]
PASTIS is a principled method combining likelihood-estimation statistics with extreme value theory to suppress superfluous parameters.<n>It reliably identifies minimal models, even with low sampling rates or measurement error.<n>It applies to partial differential equations, and applies to ecological networks and reaction-diffusion dynamics.
arXiv Detail & Related papers (2025-01-17T18:23:16Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Analysis of Random Sequential Message Passing Algorithms for Approximate
Inference [18.185200593985844]
We analyze the dynamics of a random sequential message passing algorithm for approximate inference with large Gaussian latent variable models.
We derive a range of model parameters for which the sequential algorithm does not converge.
arXiv Detail & Related papers (2022-02-16T17:16:22Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
We analyze an algorithm for approximate inference with large Gaussian latent variable models in a student-trivial scenario.
For the case of perfect data-model matching, the knowledge of static order parameters derived from the replica method allows us to obtain efficient algorithmic updates.
arXiv Detail & Related papers (2020-01-14T17:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.