Wasserstein Barycenter Gaussian Process based Bayesian Optimization
- URL: http://arxiv.org/abs/2505.12471v1
- Date: Sun, 18 May 2025 15:48:18 GMT
- Title: Wasserstein Barycenter Gaussian Process based Bayesian Optimization
- Authors: Antonio Candelieri, Andrea Ponti, Francesco Archetti,
- Abstract summary: We present a new approach to learn and optimize under uncertainty.<n>The new method, namely Wasserstein Barycenter Gausssian Process based Bayesian Optimization (WBGP-BO), resulted promising and able to converge to the optimum.
- Score: 2.1249213103048414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process based Bayesian Optimization is a widely applied algorithm to learn and optimize under uncertainty, well-known for its sample efficiency. However, recently -- and more frequently -- research studies have empirically demonstrated that the Gaussian Process fitting procedure at its core could be its most relevant weakness. Fitting a Gaussian Process means tuning its kernel's hyperparameters to a set of observations, but the common Maximum Likelihood Estimation technique, usually appropriate for learning tasks, has shown different criticalities in Bayesian Optimization, making theoretical analysis of this algorithm an open challenge. Exploiting the analogy between Gaussian Processes and Gaussian Distributions, we present a new approach which uses a prefixed set of hyperparameters values to fit as many Gaussian Processes and then combines them into a unique model as a Wasserstein Barycenter of Gaussian Processes. We considered both "easy" test problems and others known to undermine the \textit{vanilla} Bayesian Optimization algorithm. The new method, namely Wasserstein Barycenter Gausssian Process based Bayesian Optimization (WBGP-BO), resulted promising and able to converge to the optimum, contrary to vanilla Bayesian Optimization, also on the most "tricky" test problems.
Related papers
- Spectral Mixture Kernels for Bayesian Optimization [3.8601741392210434]
We introduce a novel Gaussian Process-based BO method that incorporates spectral mixture kernels.<n>This method achieves a significant improvement in both efficiency and optimization performance.<n>We provide bounds on the information gain and cumulative regret associated with obtaining the optimum.
arXiv Detail & Related papers (2025-05-23T02:07:26Z) - Bayesian Optimization by Kernel Regression and Density-based Exploration [12.074000212223446]
We propose the Bayesian Optimization by Kernel regression and density-based Exploration (BOKE) algorithm.<n>BOKE uses kernel regression for efficient function approximation, kernel density for exploration, and integrates them into the confidence bound criteria to guide the optimization process.<n>We demonstrate that BOKE not only performs competitively compared to Gaussian process-based methods but also exhibits superior computational efficiency.
arXiv Detail & Related papers (2025-02-10T06:16:51Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.