MARGE: Improving Math Reasoning for LLMs with Guided Exploration
- URL: http://arxiv.org/abs/2505.12500v1
- Date: Sun, 18 May 2025 17:24:16 GMT
- Title: MARGE: Improving Math Reasoning for LLMs with Guided Exploration
- Authors: Jingyue Gao, Runji Lin, Keming Lu, Bowen Yu, Junyang Lin, Jianyu Chen,
- Abstract summary: Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries.<n>We introduce textbfMARGE: Improving textbfMath textbfReasoning with textbfGuided textbfExploration.<n>MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment.
- Score: 31.311075009100048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries. This limitation necessitates scaling up computational responses through self-generated data, yet current methods struggle due to spurious correlated data caused by ineffective exploration across all reasoning stages. To address such challenge, we introduce \textbf{MARGE}: Improving \textbf{Ma}th \textbf{R}easoning with \textbf{G}uided \textbf{E}xploration, a novel method to address this issue and enhance mathematical reasoning through hit-guided exploration. MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment throughout the reasoning process. Through extensive experiments across multiple backbone models and benchmarks, we demonstrate that MARGE significantly improves reasoning capabilities without requiring external annotations or training additional value models. Notably, MARGE improves both single-shot accuracy and exploration diversity, mitigating a common trade-off in alignment methods. These results demonstrate MARGE's effectiveness in enhancing mathematical reasoning capabilities and unlocking the potential of scaling self-generated training data. Our code and models are available at \href{https://github.com/georgao35/MARGE}{this link}.
Related papers
- From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought [43.07899102255169]
Current methods primarily focus on positive rationales, typically relying on manual annotations or complex systems.<n>We propose a novel framework: textbfSelf-Aligning textbfMultimodal Reasoning with textbfAnswertextbfriented Chain-of-textbfThought.
arXiv Detail & Related papers (2025-07-01T08:24:51Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.<n>This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.<n>We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.<n>We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.<n>Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - FLARE: Faithful Logic-Aided Reasoning and Exploration [50.9814063216852]
We introduce a novel approach for traversing the problem space using task decompositions.<n>We use the Large Language Models to plan a solution, soft-formalise the query into facts and predicates using a logic programming code.<n>Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers.
arXiv Detail & Related papers (2024-10-14T19:39:11Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
We postulate that the inherent nature of large language models (LLMs) presents challenges in modeling mathematical reasoning.
This paper introduces a novel math dataset, enhanced with a capability to utilize a Python code interpreter.
We propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs.
arXiv Detail & Related papers (2024-01-16T08:08:01Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - REMAX: Relational Representation for Multi-Agent Exploration [13.363887960136102]
We propose a learning-based exploration strategy to generate the initial states of a game.
We demonstrate that our method improves the training and performance of the MARL model more than the existing exploration methods.
arXiv Detail & Related papers (2020-08-12T10:23:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.