From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought
- URL: http://arxiv.org/abs/2507.02984v2
- Date: Mon, 28 Jul 2025 05:53:50 GMT
- Title: From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought
- Authors: Wentao Tan, Qiong Cao, Yibing Zhan, Chao Xue, Changxing Ding,
- Abstract summary: Current methods primarily focus on positive rationales, typically relying on manual annotations or complex systems.<n>We propose a novel framework: textbfSelf-Aligning textbfMultimodal Reasoning with textbfAnswertextbfriented Chain-of-textbfThought.
- Score: 43.07899102255169
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Achieving human-like reasoning capabilities in Multimodal Large Language Models (MLLMs) has long been a goal. Current methods primarily focus on synthesizing positive rationales, typically relying on manual annotations or complex systems. Moreover, they often overlook negative reasoning, which limits the model's generalization ability and robustness in multimodal inference. To address this gap, we propose a novel framework: \textbf{S}elf-Aligning \textbf{M}ultimodal Reasoning with \textbf{A}nswer-O\textbf{r}iented Chain-of-\textbf{T}hought (SMART). SMART employs an answer-oriented chain-of-thought (AoT) prompt to automatically construct high-quality data. Drawing inspiration from human proof-based strategies, AoT leverages both correct and incorrect answers to extract key visual information that links questions and answers. When provided with correct answers, the model produces strong positive rationales. Conversely, when correct answers are replaced with incorrect alternatives, the model generates an erroneous yet compelling reasoning path, serving as a form of discriminative negative rationale. Models trained with AoT-generated data outperform those trained on manually annotated datasets, demonstrating superior reasoning capabilities. Consequently, SMART establishes an iterative generation-optimization method that continually enhances the model's reasoning skills. Experiments indicate that the SMART framework significantly improves various MLLMs, regardless of model architecture, parameter size, or pre-training dataset. The code is available at https://github.com/WentaoTan/SMART.
Related papers
- One Token to Fool LLM-as-a-Judge [31.421917676213415]
Generative reward models (also known as LLMs-as-judges) are increasingly adopted in reinforcement learning.<n>We show that generative reward models exhibit surprising vulnerabilities to superficial manipulations.<n>We introduce a simple yet effective data augmentation strategy and train a new generative reward model with substantially improved robustness.
arXiv Detail & Related papers (2025-07-11T17:55:22Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Scaling Reasoning, Losing Control: Evaluating Instruction Following in Large Reasoning Models [27.142703756752997]
We introduce MathIF, a benchmark for evaluating instruction-following in mathematical reasoning tasks.<n>Our empirical analysis reveals a consistent tension between scaling up reasoning capacity and maintaining controllability.<n>We show that even simple interventions can partially recover obedience, though at the cost of reasoning performance.
arXiv Detail & Related papers (2025-05-20T18:18:01Z) - MARGE: Improving Math Reasoning for LLMs with Guided Exploration [31.311075009100048]
Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries.<n>We introduce textbfMARGE: Improving textbfMath textbfReasoning with textbfGuided textbfExploration.<n>MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment.
arXiv Detail & Related papers (2025-05-18T17:24:16Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z) - Improving Language Model Reasoning with Self-motivated Learning [60.779625789039486]
textitSelf-motivated Learning framework motivates the model itself to automatically generate rationales on existing datasets.
We train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning.
arXiv Detail & Related papers (2024-04-10T14:05:44Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - Getting MoRE out of Mixture of Language Model Reasoning Experts [71.61176122960464]
We propose a Mixture-of-Reasoning-Experts (MoRE) framework that ensembles diverse specialized language models.
We specialize the backbone language model with prompts optimized for different reasoning categories, including factual, multihop, mathematical, and commonsense reasoning.
Our human study confirms that presenting expert predictions and the answer selection process helps annotators more accurately calibrate when to trust the system's output.
arXiv Detail & Related papers (2023-05-24T02:00:51Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.