Relation Extraction or Pattern Matching? Unravelling the Generalisation Limits of Language Models for Biographical RE
- URL: http://arxiv.org/abs/2505.12533v1
- Date: Sun, 18 May 2025 20:22:14 GMT
- Title: Relation Extraction or Pattern Matching? Unravelling the Generalisation Limits of Language Models for Biographical RE
- Authors: Varvara Arzt, Allan Hanbury, Michael Wiegand, Gábor Recski, Terra Blevins,
- Abstract summary: We show that relation extraction models struggle with unseen data, even within similar domains.<n>Our results also show that data quality, rather than lexical similarity, is key to robust transfer.
- Score: 18.616344314400244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analysing the generalisation capabilities of relation extraction (RE) models is crucial for assessing whether they learn robust relational patterns or rely on spurious correlations. Our cross-dataset experiments find that RE models struggle with unseen data, even within similar domains. Notably, higher intra-dataset performance does not indicate better transferability, instead often signaling overfitting to dataset-specific artefacts. Our results also show that data quality, rather than lexical similarity, is key to robust transfer, and the choice of optimal adaptation strategy depends on the quality of data available: while fine-tuning yields the best cross-dataset performance with high-quality data, few-shot in-context learning (ICL) is more effective with noisier data. However, even in these cases, zero-shot baselines occasionally outperform all cross-dataset results. Structural issues in RE benchmarks, such as single-relation per sample constraints and non-standardised negative class definitions, further hinder model transferability.
Related papers
- CALF: A Conditionally Adaptive Loss Function to Mitigate Class-Imbalanced Segmentation [0.2902243522110345]
Imbalanced datasets pose a challenge in training deep learning (DL) models for medical diagnostics.<n>We propose a novel, statistically driven, conditionally adaptive loss function (CALF) tailored to accommodate the conditions of imbalanced datasets in DL training.
arXiv Detail & Related papers (2025-04-06T12:03:33Z) - Benchmarking community drug response prediction models: datasets, models, tools, and metrics for cross-dataset generalization analysis [36.689210473887904]
We introduce a benchmarking framework for evaluating cross-dataset prediction generalization in deep learning (DL) and machine learning (ML) models.<n>We quantify both absolute performance (e.g., predictive accuracy across datasets) and relative performance (e.g., performance drop compared to within-dataset results)<n>Our results reveal substantial performance drops when models are tested on unseen datasets, underscoring the importance of rigorous generalization assessments.
arXiv Detail & Related papers (2025-03-18T15:40:18Z) - ReLATE: Resilient Learner Selection for Multivariate Time-Series Classification Against Adversarial Attacks [6.20056740621519]
We introduce ReLATE, a framework that identifies robust learners based on dataset similarity.<n>ReLATE maintains multiple deep learning models in well-known adversarial attack scenarios.<n>It reduces computational overhead by an average of 81.2%, enhancing adversarial resilience and streamlining robust model selection.
arXiv Detail & Related papers (2025-03-10T21:55:50Z) - Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.<n>This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.<n>We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.<n>To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
We study the problem of model selection in causal inference, specifically for conditional average treatment effect (CATE) estimation.
We conduct an empirical analysis to benchmark the surrogate model selection metrics introduced in the literature, as well as the novel ones introduced in this work.
arXiv Detail & Related papers (2022-11-03T16:26:06Z) - Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets [27.562256973255728]
Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on.
We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model.
Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations.
arXiv Detail & Related papers (2022-03-24T09:08:05Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.