論文の概要: Single Image Reflection Removal via inter-layer Complementarity
- arxiv url: http://arxiv.org/abs/2505.12641v1
- Date: Mon, 19 May 2025 02:50:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.369105
- Title: Single Image Reflection Removal via inter-layer Complementarity
- Title(参考訳): 層間相補性による単層反射除去
- Authors: Yue Huang, Zi'ang Li, Tianle Hu, Jie Wen, Guanbin Li, Jinglin Zhang, Guoxu Zhou, Xiaozhao Fang,
- Abstract要約: 二重ストリームアーキテクチャのための新しい層間相補性モデルと効率的な層間相補性注意機構を導入する。
提案手法は,複数の公開データセット上での最先端の分離品質を実現するとともに,計算コストとモデルの複雑さを著しく低減する。
- 参考スコア(独自算出の注目度): 63.37693451363996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although dual-stream architectures have achieved remarkable success in single image reflection removal, they fail to fully exploit inter-layer complementarity in their physical modeling and network design, which limits the quality of image separation. To address this fundamental limitation, we propose two targeted improvements to enhance dual-stream architectures: First, we introduce a novel inter-layer complementarity model where low-frequency components extracted from the residual layer interact with the transmission layer through dual-stream architecture to enhance inter-layer complementarity. Meanwhile, high-frequency components from the residual layer provide inverse modulation to both streams, improving the detail quality of the transmission layer. Second, we propose an efficient inter-layer complementarity attention mechanism which first cross-reorganizes dual streams at the channel level to obtain reorganized streams with inter-layer complementary structures, then performs attention computation on the reorganized streams to achieve better inter-layer separation, and finally restores the original stream structure for output. Experimental results demonstrate that our method achieves state-of-the-art separation quality on multiple public datasets while significantly reducing both computational cost and model complexity.
- Abstract(参考訳): デュアルストリームアーキテクチャは、単一画像のリフレクション除去において顕著な成功を収めているが、物理モデリングとネットワーク設計における層間相補性を完全に活用することができず、画像分離の品質が制限されている。
まず、残層から抽出された低周波成分が二重ストリームアーキテクチャを介して伝送層と相互作用し、層間相補性を高める新しい層間相補性モデルを提案する。
一方、残層からの高周波成分は、両方のストリームに逆変調を与え、伝送層の詳細な品質を向上させる。
第2に、まずチャネルレベルで二重ストリームを相互に再編成し、層間補完構造を持つ再編成ストリームを取得し、次に、より優れた層間分離を実現するために再編成ストリームに注意計算を行い、最終的に出力のために元のストリーム構造を復元する効率的な層間補完性注意機構を提案する。
実験により,提案手法は複数の公開データセット上での最先端の分離品質を実現し,計算コストとモデルの複雑さを著しく低減することを示した。
関連論文リスト
- EchoIR: Advancing Image Restoration with Echo Upsampling and Bi-Level Optimization [0.0]
本稿では,このギャップを埋めるために,二つの学習可能なアップサンプリング機構を備えたUNetライクなイメージ復元ネットワークであるEchoIRを紹介する。
画像復元とアップサンプリングタスクの階層モデルの構築にあたり、近似二段階最適化(AS-BLO)を提案する。
論文 参考訳(メタデータ) (2024-12-10T06:27:08Z) - Blind Underwater Image Restoration using Co-Operational Regressor Networks [15.853520058218042]
我々は、CoRe-Nets(Co-Operational Regressor Networks)という新しい機械学習モデルを提案する。
CoRe-Netは、画像変換を担当するApprentice Regressor(AR)と、ARによって生成された画像のピーク信号-ノイズ比(PSNR)を評価し、それをARにフィードバックするMaster Regressor(MR)の2つの協調ネットワークで構成されている。
私たちの結果と提案したアプローチの最適化されたPyTorch実装はGitHubで公開されています。
論文 参考訳(メタデータ) (2024-12-05T09:15:21Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - IPT-V2: Efficient Image Processing Transformer using Hierarchical Attentions [26.09373405194564]
我々は,IPTV2と呼ばれる階層的な注意を払って,効率的な画像処理トランスフォーマアーキテクチャを提案する。
我々は、局所的およびグローバルな受容領域における適切なトークン相互作用を得るために、焦点コンテキスト自己注意(FCSA)とグローバルグリッド自己注意(GGSA)を採用する。
提案した IPT-V2 は,様々な画像処理タスクにおいて,デノナイズ,デブロアリング,デコライニングを網羅し,従来の手法よりも性能と計算の複雑さのトレードオフを得る。
論文 参考訳(メタデータ) (2024-03-31T10:01:20Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
画像デハージングのための相互情報駆動型トリプルインタラクションネットワーク(MITNet)を提案する。
振幅誘導ヘイズ除去と呼ばれる第1段階は、ヘイズ除去のためのヘイズ画像の振幅スペクトルを復元することを目的としている。
第2段階は位相誘導構造が洗練され、位相スペクトルの変換と微細化を学ぶことに尽力した。
論文 参考訳(メタデータ) (2023-08-14T08:23:58Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Learning to See Through Obstructions with Layered Decomposition [117.77024641706451]
移動画像から不要な障害を取り除くための学習に基づくアプローチを提案する。
本手法は背景要素と閉塞要素の運動差を利用して両方の層を復元する。
本研究では,合成データから得られた提案手法が実画像に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-08-11T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。