SPKLIP: Aligning Spike Video Streams with Natural Language
- URL: http://arxiv.org/abs/2505.12656v2
- Date: Mon, 26 May 2025 02:32:20 GMT
- Title: SPKLIP: Aligning Spike Video Streams with Natural Language
- Authors: Yongchang Gao, Meiling Jin, Zhaofei Yu, Tiejun Huang, Guozhang Chen,
- Abstract summary: We introduce SPKLIP, the first architecture specifically for Spike-VLA.<n> SPKLIP employs a hierarchical spike feature extractor that adaptively models multi-scale temporal dynamics in event streams.<n> Experiments show state-of-the-art performance on benchmark spike datasets and strong few-shot generalization on a newly contributed real-world dataset.
- Score: 37.640682226789934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spike cameras offer unique sensing capabilities but their sparse, asynchronous output challenges semantic understanding, especially for Spike Video-Language Alignment (Spike-VLA) where models like CLIP underperform due to modality mismatch. We introduce SPKLIP, the first architecture specifically for Spike-VLA. SPKLIP employs a hierarchical spike feature extractor that adaptively models multi-scale temporal dynamics in event streams, and uses spike-text contrastive learning to directly align spike video with language, enabling effective few-shot learning. A full-spiking visual encoder variant, integrating SNN components into our pipeline, demonstrates enhanced energy efficiency. Experiments show state-of-the-art performance on benchmark spike datasets and strong few-shot generalization on a newly contributed real-world dataset. SPKLIP's energy efficiency highlights its potential for neuromorphic deployment, advancing event-based multimodal research. The source code and dataset are available at [link removed for anonymity].
Related papers
- Video-Level Language-Driven Video-Based Visible-Infrared Person Re-Identification [47.40091830500585]
Video-based Visible-basedInfrared Person Re-Identification (VVIReID) aims to match pedestrian sequences across modalities by extracting modality-in sequence-level features.<n>A framework, video-level language-driven VVI-ReID (VLD), consists of two core modules: inmodality language (IMLP) and spatialtemporal aggregation.
arXiv Detail & Related papers (2025-06-03T04:49:08Z) - DiffCLIP: Differential Attention Meets CLIP [57.396578974401734]
We propose DiffCLIP, a novel vision-language model that extends the differential attention mechanism to CLIP architectures.<n>With minimal additional parameters, DiffCLIP achieves superior performance on image-text understanding tasks.
arXiv Detail & Related papers (2025-03-09T14:04:09Z) - Integrating Frequency-Domain Representations with Low-Rank Adaptation in Vision-Language Models [0.6715525121432597]
This research presents a novel vision language model (VLM) framework to enhance feature extraction, scalability, and efficiency.<n>We evaluate the proposed model on caption generation and Visual Question Answering (VQA) tasks using benchmark datasets with varying levels of Gaussian noise.<n>Our model provides more detailed and contextually relevant responses, particularly for real-world images captured by a RealSense camera mounted on an Unmanned Ground Vehicle (UGV)
arXiv Detail & Related papers (2025-03-08T01:22:10Z) - SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - Finding Visual Saliency in Continuous Spike Stream [23.591309376586835]
In this paper, we investigate the visual saliency in the continuous spike stream for the first time.
We propose a Recurrent Spiking Transformer framework, which is based on a full spiking neural network.
Our framework exhibits a substantial margin of improvement in highlighting and capturing visual saliency in the spike stream.
arXiv Detail & Related papers (2024-03-10T15:15:35Z) - Hierarchical Graph Pattern Understanding for Zero-Shot VOS [102.21052200245457]
This paper proposes a new hierarchical graph neural network (GNN) architecture for zero-shot video object segmentation (ZS-VOS)
Inspired by the strong ability of GNNs in capturing structural relations, HGPU innovatively leverages motion cues (ie, optical flow) to enhance the high-order representations from the neighbors of target frames.
arXiv Detail & Related papers (2023-12-15T04:13:21Z) - SpikeCLIP: A Contrastive Language-Image Pretrained Spiking Neural Network [39.54624592783459]
Spiking Neural Networks (SNNs) have emerged as a promising alternative to conventional Artificial Neural Networks (ANNs)
This paper presents SpikeCLIP, a novel framework designed to bridge the modality gap in spike-based computation.
arXiv Detail & Related papers (2023-10-10T09:57:17Z) - Improving Video Violence Recognition with Human Interaction Learning on
3D Skeleton Point Clouds [88.87985219999764]
We develop a method for video violence recognition from a new perspective of skeleton points.
We first formulate 3D skeleton point clouds from human sequences extracted from videos.
We then perform interaction learning on these 3D skeleton point clouds.
arXiv Detail & Related papers (2023-08-26T12:55:18Z) - MA-FSAR: Multimodal Adaptation of CLIP for Few-Shot Action Recognition [41.78245303513613]
We introduce MA-FSAR, a framework that employs the Fine-Tuning (PEFT) technique to enhance the CLIP visual encoder in terms of action-related temporal and semantic representations.
In addition to these token-level designs, we propose a prototype-level text-guided construction module to further enrich the temporal and semantic characteristics of video prototypes.
arXiv Detail & Related papers (2023-08-03T04:17:25Z) - Implicit Temporal Modeling with Learnable Alignment for Video
Recognition [95.82093301212964]
We propose a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance.
ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H.
arXiv Detail & Related papers (2023-04-20T17:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.