Mamba-Adaptor: State Space Model Adaptor for Visual Recognition
- URL: http://arxiv.org/abs/2505.12685v1
- Date: Mon, 19 May 2025 04:14:33 GMT
- Title: Mamba-Adaptor: State Space Model Adaptor for Visual Recognition
- Authors: Fei Xie, Jiahao Nie, Yujin Tang, Wenkang Zhang, Hongshen Zhao,
- Abstract summary: We develop a vision task Adaptor for Mamba models, which consists of two functional modules: Adaptor-T and Adaptor-S.<n>Our Mamba-Adaptor achieves state-of-the-art performance on the ImageNet and COCO benchmarks.
- Score: 5.282318851833395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent State Space Models (SSM), especially Mamba, have demonstrated impressive performance in visual modeling and possess superior model efficiency. However, the application of Mamba to visual tasks suffers inferior performance due to three main constraints existing in the sequential model: 1) Casual computing is incapable of accessing global context; 2) Long-range forgetting when computing the current hidden states; 3) Weak spatial structural modeling due to the transformed sequential input. To address these issues, we investigate a simple yet powerful vision task Adaptor for Mamba models, which consists of two functional modules: Adaptor-T and Adaptor-S. When solving the hidden states for SSM, we apply a lightweight prediction module Adaptor-T to select a set of learnable locations as memory augmentations to ease long-range forgetting issues. Moreover, we leverage Adapator-S, composed of multi-scale dilated convolutional kernels, to enhance the spatial modeling and introduce the image inductive bias into the feature output. Both modules can enlarge the context modeling in casual computing, as the output is enhanced by the inaccessible features. We explore three usages of Mamba-Adaptor: A general visual backbone for various vision tasks; A booster module to raise the performance of pretrained backbones; A highly efficient fine-tuning module that adapts the base model for transfer learning tasks. Extensive experiments verify the effectiveness of Mamba-Adaptor in three settings. Notably, our Mamba-Adaptor achieves state-of the-art performance on the ImageNet and COCO benchmarks.
Related papers
- DefMamba: Deformable Visual State Space Model [65.50381013020248]
We propose a novel visual foundation model called DefMamba.<n>By combining a deformable scanning(DS) strategy, this model significantly improves its ability to learn image structures and detects changes in object details.<n>Numerous experiments have shown that DefMamba achieves state-of-the-art performance in various visual tasks.
arXiv Detail & Related papers (2025-04-08T08:22:54Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.<n>In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2 [4.30176340351235]
We introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference.
We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning.
arXiv Detail & Related papers (2024-07-29T09:38:15Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, MambaVision, specifically tailored for vision applications.<n>We show that equipping the Mamba architecture with self-attention blocks in the final layers greatly improves its capacity to capture long-range spatial dependencies.<n>For classification on the ImageNet-1K dataset, MambaVision variants achieve state-of-the-art (SOTA) performance in terms of both Top-1 accuracy and throughput.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - SPMamba: State-space model is all you need in speech separation [20.168153319805665]
CNN-based speech separation models face local receptive field limitations and cannot effectively capture long time dependencies.
We introduce an innovative speech separation method called SPMamba.
This model builds upon the robust TF-GridNet architecture, replacing its traditional BLSTM modules with bidirectional Mamba modules.
arXiv Detail & Related papers (2024-04-02T16:04:31Z) - PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition [21.761988930589727]
PlainMamba is a simple non-hierarchical state space model (SSM) designed for general visual recognition.
We adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images.
Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks.
arXiv Detail & Related papers (2024-03-26T13:35:10Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.