Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses
- URL: http://arxiv.org/abs/2505.12710v1
- Date: Mon, 19 May 2025 05:04:48 GMT
- Title: Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses
- Authors: Yingkai Kang, Jiawen Kang, Jinbo Wen, Tao Zhang, Zhaohui Yang, Dusit Niyato, Yan Zhang,
- Abstract summary: vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities.<n>We propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling.<n>We develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions.
- Score: 55.70043755630583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicular metaverses are an emerging paradigm that merges intelligent transportation systems with virtual spaces, leveraging advanced digital twin and Artificial Intelligence (AI) technologies to seamlessly integrate vehicles, users, and digital environments. In this paradigm, vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities, enabling real-time processing and analysis of multi-modal data to provide users with customized interactive services. Since vehicular AI agents require substantial resources for real-time decision-making, given vehicle mobility and network dynamics conditions, the AI agents are deployed in RoadSide Units (RSUs) with sufficient resources and dynamically migrated among them. However, AI agent migration requires frequent data exchanges, which may expose vehicular metaverses to potential cyber attacks. To this end, we propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling through cooperation between vehicles and RSUs. Additionally, we design a trust evaluation model based on the theory of planned behavior to dynamically quantify the reputation of RSUs, thereby better accommodating the personalized trust preferences of users. We then model the vehicular AI agent migration process as a partially observable markov decision process and develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions. Numerical results demonstrate that the CGDM algorithm significantly outperforms baseline methods in reducing system latency and enhancing robustness against cyber attacks.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Bi-LSTM based Multi-Agent DRL with Computation-aware Pruning for Agent Twins Migration in Vehicular Embodied AI Networks [20.574619097682923]
In intelligent transportation, the combination of large language models and embodied Artificial Intelligence (AI) spawns the Vehicular Embodied AI Network (VEANs)<n>In VEANs, Autonomous Vehicles (AVs) are typical agents whose local advanced AI applications are defined as vehicular embodied AI agents.<n>Due to latency and resource constraints, the local AI applications and services running on vehicular embodied AI agents need to be migrated.
arXiv Detail & Related papers (2025-05-09T18:52:26Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - An Approach to Systematic Data Acquisition and Data-Driven Simulation for the Safety Testing of Automated Driving Functions [32.37902846268263]
In R&D areas related to the safety impact of the "open world", there is a significant shortage of real-world data to parameterize and/or validate simulations.
We present an approach to systematically acquire data in public traffic by heterogeneous means, transform it into a unified representation, and use it to automatically parameterize traffic behavior models for use in data-driven virtual validation of automated driving functions.
arXiv Detail & Related papers (2024-05-02T23:24:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Multi-Agent Deep Reinforcement Learning for Dynamic Avatar Migration in
AIoT-enabled Vehicular Metaverses with Trajectory Prediction [70.9337170201739]
We propose a model to predict the future trajectories of intelligent vehicles based on their historical data.
We show that our proposed algorithm can effectively reduce the latency of executing avatar tasks by around 25% without prediction.
arXiv Detail & Related papers (2023-06-26T13:27:11Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Multi-Agent Reinforcement Learning for Markov Routing Games: A New
Modeling Paradigm For Dynamic Traffic Assignment [11.093194714316434]
We develop a Markov routing game (MRG) in which each agent learns and updates her own en-route path choice policy.
We show that the routing behavior of intelligent agents is shown to converge to the classical notion of predictive dynamic user equilibrium.
arXiv Detail & Related papers (2020-11-22T02:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.