FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
- URL: http://arxiv.org/abs/2505.12728v2
- Date: Sun, 25 May 2025 08:24:22 GMT
- Title: FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
- Authors: Zihua Wang, Ruibo Li, Haozhe Du, Joey Tianyi Zhou, Yu Zhang, Xu Yang,
- Abstract summary: Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds.<n>This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text.<n>We propose textbfFLASH (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs.
- Score: 41.04727840852988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM. Our code is available \href{https://github.com/ZihuaEvan/FlashSD/}{[here]}.
Related papers
- CrossLMM: Decoupling Long Video Sequences from LMMs via Dual Cross-Attention Mechanisms [16.41418610688371]
We introduce CrossLMM, which substantially reduces visual token quantity with minimal performance degradation.<n>We also introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens.<n>Our approach achieves comparable or superior performance across diverse video-based Large Language Models benchmarks.
arXiv Detail & Related papers (2025-05-22T17:59:53Z) - ToFu: Visual Tokens Reduction via Fusion for Multi-modal, Multi-patch, Multi-image Task [34.269081635534526]
We propose ToFu, a visual encoder-agnostic, training-free Token Fusion strategy for high-resolution, multi-image, tasks.<n>We validate our approach on the well-established LLaVA-Interleave Bench, which covers challenging multi-image tasks.
arXiv Detail & Related papers (2025-03-06T14:00:59Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
We introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference.<n>VTW strategically withdraws vision tokens at a certain layer, enabling only text tokens to engage in subsequent layers.<n>Our approach can cut computational overhead by over 40% across diverse multimodal tasks while maintaining performance.
arXiv Detail & Related papers (2024-05-09T14:38:53Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
We propose a novel framework specifically designed for speculative sampling.
Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words.
We demonstrate impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach.
arXiv Detail & Related papers (2024-02-24T08:10:39Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters.
We propose textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)
arXiv Detail & Related papers (2024-02-19T03:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.