LiDAR MOT-DETR: A LiDAR-based Two-Stage Transformer for 3D Multiple Object Tracking
- URL: http://arxiv.org/abs/2505.12753v2
- Date: Thu, 22 May 2025 14:17:00 GMT
- Title: LiDAR MOT-DETR: A LiDAR-based Two-Stage Transformer for 3D Multiple Object Tracking
- Authors: Martha Teiko Teye, Ori Maoz, Matthias Rottmann,
- Abstract summary: We present a lidar-based two-staged DETR inspired transformer; a smoother and tracker.<n>The smoother stage refines lidar object detections, from any off-the-shelf detector, across a moving temporal window.<n>The tracker stage uses a DETR-based attention block to maintain tracks across time by associating tracked objects with the refined detections using the point cloud as context.
- Score: 4.69726714177332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking from LiDAR point clouds presents unique challenges due to the sparse and irregular nature of the data, compounded by the need for temporal coherence across frames. Traditional tracking systems often rely on hand-crafted features and motion models, which can struggle to maintain consistent object identities in crowded or fast-moving scenes. We present a lidar-based two-staged DETR inspired transformer; a smoother and tracker. The smoother stage refines lidar object detections, from any off-the-shelf detector, across a moving temporal window. The tracker stage uses a DETR-based attention block to maintain tracks across time by associating tracked objects with the refined detections using the point cloud as context. The model is trained on the datasets nuScenes and KITTI in both online and offline (forward peeking) modes demonstrating strong performance across metrics such as ID-switch and multiple object tracking accuracy (MOTA). The numerical results indicate that the online mode outperforms the lidar-only baseline and SOTA models on the nuScenes dataset, with an aMOTA of 0.722 and an aMOTP of 0.475, while the offline mode provides an additional 3 pp aMOTP.
Related papers
- Online Dense Point Tracking with Streaming Memory [54.22820729477756]
Dense point tracking is a challenging task requiring the continuous tracking of every point in the initial frame throughout a substantial portion of a video.<n>Recent point tracking algorithms usually depend on sliding windows for indirect information propagation from the first frame to the current one.<n>We present a lightweight and fast model with textbfStreaming memory for dense textbfPOint textbfTracking and online video processing.
arXiv Detail & Related papers (2025-03-09T06:16:49Z) - IMM-MOT: A Novel 3D Multi-object Tracking Framework with Interacting Multiple Model Filter [10.669576499007139]
3D Multi-Object Tracking (MOT) provides the trajectories of surrounding objects.<n>Existing 3D MOT methods based on the Tracking-by-Detection framework typically use a single motion model to track an object.<n>We introduce the Interacting Multiple Model filter in IMM-MOT, which accurately fits the complex motion patterns of individual objects.
arXiv Detail & Related papers (2025-02-13T01:55:32Z) - CrossTracker: Robust Multi-modal 3D Multi-Object Tracking via Cross Correction [27.18612358750601]
CrossTracker is a novel two-stage paradigm for online multi-modal 3D MOT.<n>Our experiments demonstrate the superior performance of our CrossTracker over its eighteen competitors.
arXiv Detail & Related papers (2024-11-28T01:36:29Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - 3D Single-object Tracking in Point Clouds with High Temporal Variation [79.5863632942935]
High temporal variation of point clouds is the key challenge of 3D single-object tracking (3D SOT)
Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth.
We present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack.
arXiv Detail & Related papers (2024-08-04T14:57:28Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking [34.40019455462043]
We propose to learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns.
Our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
arXiv Detail & Related papers (2020-10-20T06:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.