GAP: Graph-Assisted Prompts for Dialogue-based Medication Recommendation
- URL: http://arxiv.org/abs/2505.12888v1
- Date: Mon, 19 May 2025 09:18:19 GMT
- Title: GAP: Graph-Assisted Prompts for Dialogue-based Medication Recommendation
- Authors: Jialun Zhong, Yanzeng Li, Sen Hu, Yang Zhang, Teng Xu, Lei Zou,
- Abstract summary: We propose textbfGAP framework for dialogue-based medication recommendation.<n>It extracts medical concepts and corresponding states from dialogue to construct an explicitly patient-centric graph.<n>It can generate abundant queries and prompts, thus retrieving information from multiple sources to reduce the non-factual responses.
- Score: 16.144875467144917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medication recommendations have become an important task in the healthcare domain, especially in measuring the accuracy and safety of medical dialogue systems (MDS). Different from the recommendation task based on electronic health records (EHRs), dialogue-based medication recommendations require research on the interaction details between patients and doctors, which is crucial but may not exist in EHRs. Recent advancements in large language models (LLM) have extended the medical dialogue domain. These LLMs can interpret patients' intent and provide medical suggestions including medication recommendations, but some challenges are still worth attention. During a multi-turn dialogue, LLMs may ignore the fine-grained medical information or connections across the dialogue turns, which is vital for providing accurate suggestions. Besides, LLMs may generate non-factual responses when there is a lack of domain-specific knowledge, which is more risky in the medical domain. To address these challenges, we propose a \textbf{G}raph-\textbf{A}ssisted \textbf{P}rompts (\textbf{GAP}) framework for dialogue-based medication recommendation. It extracts medical concepts and corresponding states from dialogue to construct an explicitly patient-centric graph, which can describe the neglected but important information. Further, combined with external medical knowledge graphs, GAP can generate abundant queries and prompts, thus retrieving information from multiple sources to reduce the non-factual responses. We evaluate GAP on a dialogue-based medication recommendation dataset and further explore its potential in a more difficult scenario, dynamically diagnostic interviewing. Extensive experiments demonstrate its competitive performance when compared with strong baselines.
Related papers
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.<n>Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.<n>We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Natural Language-Assisted Multi-modal Medication Recommendation [97.07805345563348]
We introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR)<n>The NLA-MMR is a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly.<n>In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications.
arXiv Detail & Related papers (2025-01-13T09:51:50Z) - MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations [23.437292621092823]
We introduce MediTOD, a dataset of doctor-patient dialogues in English for the medical history-taking task.
We devise a questionnaire-based labeling scheme tailored to the medical domain.
Then, medical professionals create the dataset with high-quality comprehensive annotations.
arXiv Detail & Related papers (2024-10-18T06:38:22Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MidMed: Towards Mixed-Type Dialogues for Medical Consultation [12.676937863407542]
Most medical dialogue systems assume that patients have clear goals (medicine querying, surgical operation querying, etc.) before medical consultation.
Due to the lack of medical knowledge, it is usually difficult for patients to determine clear goals with all necessary slots.
We propose a novel task and create a human-to-human mixed-type medical consultation dialogue corpus, termed MidMed.
arXiv Detail & Related papers (2023-06-05T14:36:31Z) - PlugMed: Improving Specificity in Patient-Centered Medical Dialogue
Generation using In-Context Learning [20.437165038293426]
The patient-centered medical dialogue systems strive to offer diagnostic interpretation services to users who are less knowledgeable about medical knowledge.
It is difficult for the large language models (LLMs) to guarantee the specificity of responses in spite of its promising performance.
Inspired by in-context learning, we propose PlugMed, a Plug-and-Play Medical Dialogue System.
arXiv Detail & Related papers (2023-05-19T08:18:24Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
We propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction.
A new large medical dialogue dataset with multi-level fine-grained annotations is introduced.
We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies.
arXiv Detail & Related papers (2022-04-19T16:43:21Z) - DialMed: A Dataset for Dialogue-based Medication Recommendation [20.08110449216702]
We make the first attempt to recommend medications with the conversations between doctors and patients.
We construct DialMed, the first high-quality dataset for medical dialogue-based medication recommendation task.
arXiv Detail & Related papers (2022-02-22T05:12:29Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.