論文の概要: Active Learning on Synthons for Molecular Design
- arxiv url: http://arxiv.org/abs/2505.12913v1
- Date: Mon, 19 May 2025 09:48:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.526148
- Title: Active Learning on Synthons for Molecular Design
- Title(参考訳): 分子設計のためのシンソンのアクティブラーニング
- Authors: Tom George Grigg, Mason Burlage, Oliver Brook Scott, Adam Taouil, Dominique Sydow, Liam Wilbraham,
- Abstract要約: マルチベクトル展開に適用可能な単純なアルゴリズムであるSALSA(Synthon Acquisition)によるスケーラブル能動学習を提案する。
SALSAは、シントーンやフラグメントの選択よりもモデリングと取得を分解することで、プールベースのアクティブな学習を非可算空間に拡張する。
SALSA生成分子は、既知の生物活性と同等の化学的性質を有し、産業主導の生成アプローチよりも多様性と高いスコアを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Exhaustive virtual screening is highly informative but often intractable against the expensive objective functions involved in modern drug discovery. This problem is exacerbated in combinatorial contexts such as multi-vector expansion, where molecular spaces can quickly become ultra-large. Here, we introduce Scalable Active Learning via Synthon Acquisition (SALSA): a simple algorithm applicable to multi-vector expansion which extends pool-based active learning to non-enumerable spaces by factoring modeling and acquisition over synthon or fragment choices. Through experiments on ligand- and structure-based objectives, we highlight SALSA's sample efficiency, and its ability to scale to spaces of trillions of compounds. Further, we demonstrate application toward multi-parameter objective design tasks on three protein targets - finding SALSA-generated molecules have comparable chemical property profiles to known bioactives, and exhibit greater diversity and higher scores over an industry-leading generative approach.
- Abstract(参考訳): 被曝性仮想スクリーニングは極めて有益であるが、近代的な薬物発見に関わる高価な目的機能に対してしばしば難解である。
この問題は、分子空間が急速に超大型化する多ベクトル展開のような組合せの文脈で悪化する。
本稿ではSALSA(Scalable Active Learning via Synthon Acquisition)について紹介する。SALSAはマルチベクトル拡張に適用可能な単純なアルゴリズムで、シントーンやフラグメントの選択よりもモデリングや取得を分解することで、プールベースのアクティブラーニングを非可算空間に拡張する。
配位子および構造に基づく目的の実験を通じて、SALSAのサンプル効率と、数兆の化合物の空間にスケールする能力を強調した。
さらに,SALSA生成分子が既知の生物活性物質に匹敵する化学的特性を持つこと,および産業主導の生成アプローチよりも多様性と高いスコアを示すこと,の3つのタンパク質標的に対する多パラメータ目的設計タスクへの応用を実証する。
関連論文リスト
- Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
大規模言語モデル(LLM)は、数ショットのインコンテキスト学習(ICL)において、優れたパフォーマンスを示している。
マルチショットICLで利用可能な実験データの不足を克服する,新しい半教師付き学習手法を開発した。
示すように、この新しい手法は、既存の分子設計のためのICL法を大幅に改善し、科学者にとってアクセスしやすく、使いやすくする。
論文 参考訳(メタデータ) (2024-07-26T21:10:50Z) - RGFN: Synthesizable Molecular Generation Using GFlowNets [51.33672611338754]
本稿では,化学反応の空間内で直接動作するGFlowNetフレームワークの拡張であるReaction-GFlowNetを提案する。
RGFNは、生成した候補の同等の品質を維持しながら、アウト・オブ・ボックスの合成を可能にする。
提案手法の有効性を,事前訓練されたプロキシモデルやGPUアクセラレーションドッキングなど,さまざまなオラクルモデルに適用した。
論文 参考訳(メタデータ) (2024-06-01T13:11:11Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
そこで本研究では,戦略的サンプリングを通じて原因・影響関係を識別する能動的学習手法を提案する。
この方法は、より大きな化学空間の最も多くの情報を符号化できるデータセットの最小サブセットを特定する。
その後、同定された因果関係を利用して体系的な介入を行い、モデルがこれまで遭遇していなかった化学空間における設計タスクを最適化する。
論文 参考訳(メタデータ) (2024-04-05T17:15:48Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
短い一本鎖RNAとDNA配列(アプタマー)の逆設計は、一連の望ましい基準を満たす配列を見つけるタスクである。
我々は、Pottsモデルとして知られる教師なし機械学習モデルを用いて、制御可能なシーケンスの多様性を持つ新しい有用なシーケンスを発見することを提案する。
論文 参考訳(メタデータ) (2022-08-10T13:30:58Z) - De novo design of protein target specific scaffold-based Inhibitors via
Reinforcement Learning [8.210294479991118]
標的タンパク質の分子開発への現在のアプローチは直観駆動であり、反復的な設計-テストサイクルが遅くなるのを妨げている。
本稿では3D-MolGNN$_RL$と呼ばれる新しいフレームワークを提案する。
われわれのアプローチは、最適化された活動、有効性、生体物理特性によるリード最適化のための解釈可能な人工知能(AI)ツールとして機能する。
論文 参考訳(メタデータ) (2022-05-21T00:47:35Z) - ChemoVerse: Manifold traversal of latent spaces for novel molecule
discovery [0.7742297876120561]
所望の化学的性質を持つ分子構造を同定することが不可欠である。
ニューラルネットワークと機械学習を用いた生成モデルの最近の進歩は、薬物のような化合物の仮想ライブラリの設計に広く利用されている。
論文 参考訳(メタデータ) (2020-09-29T12:11:40Z) - Stochastic-based Neural Network hardware acceleration for an efficient
ligand-based virtual screening [0.6431253679501663]
仮想スクリーニングは、治療対象の生物活性を示す可能性が最も高い分子化合物の同定方法を研究する。
大量の小さな有機化合物と、このような大規模なスクリーニングを行う可能性のある数千のターゲットにより、分子データベースのスクリーニングにおける処理速度とエネルギー効率の両方を向上する研究コミュニティへの関心が高まっている。
本研究では,各分子を1つのエネルギーベースベクトルで記述した分類モデルを提案し,ANNを用いた機械学習システムを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:18:15Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。