The role of data partitioning on the performance of EEG-based deep learning models in supervised cross-subject analysis: a preliminary study
- URL: http://arxiv.org/abs/2505.13021v1
- Date: Mon, 19 May 2025 12:05:28 GMT
- Title: The role of data partitioning on the performance of EEG-based deep learning models in supervised cross-subject analysis: a preliminary study
- Authors: Federico Del Pup, Andrea Zanola, Louis Fabrice Tshimanga, Alessandra Bertoldo, Livio Finos, Manfredo Atzori,
- Abstract summary: Deep learning is advancing the analysis of electroencephalography (EEG) data by effectively discovering highly nonlinear patterns.<n>No comprehensive guidelines for proper data partitioning and cross-validation exist in the domain.<n>This paper thoroughly investigates the role of data partitioning and cross-validation in evaluating EEG deep learning models.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is significantly advancing the analysis of electroencephalography (EEG) data by effectively discovering highly nonlinear patterns within the signals. Data partitioning and cross-validation are crucial for assessing model performance and ensuring study comparability, as they can produce varied results and data leakage due to specific signal properties (e.g., biometric). Such variability leads to incomparable studies and, increasingly, overestimated performance claims, which are detrimental to the field. Nevertheless, no comprehensive guidelines for proper data partitioning and cross-validation exist in the domain, nor is there a quantitative evaluation of their impact on model accuracy, reliability, and generalizability. To assist researchers in identifying optimal experimental strategies, this paper thoroughly investigates the role of data partitioning and cross-validation in evaluating EEG deep learning models. Five cross-validation settings are compared across three supervised cross-subject classification tasks (BCI, Parkinson's, and Alzheimer's disease detection) and four established architectures of increasing complexity (ShallowConvNet, EEGNet, DeepConvNet, and Temporal-based ResNet). The comparison of over 100,000 trained models underscores, first, the importance of using subject-based cross-validation strategies for evaluating EEG deep learning models, except when within-subject analyses are acceptable (e.g., BCI). Second, it highlights the greater reliability of nested approaches (N-LNSO) compared to non-nested counterparts, which are prone to data leakage and favor larger models overfitting to validation data. In conclusion, this work provides EEG deep learning researchers with an analysis of data partitioning and cross-validation and offers guidelines to avoid data leakage, currently undermining the domain with potentially overestimated performance claims.
Related papers
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [51.55434084913129]
In drug discovery, compounds most critical for advancing research often lie beyond the training set.<n>We propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data.<n>We demonstrate significant performance gains on challenging real-world datasets.
arXiv Detail & Related papers (2025-06-13T15:27:40Z) - Prototype-Guided Diffusion for Digital Pathology: Achieving Foundation Model Performance with Minimal Clinical Data [6.318463500874778]
We propose a prototype-guided diffusion model to generate high-fidelity synthetic pathology data at scale.<n>Our approach ensures biologically and diagnostically meaningful variations in the generated data.<n>We demonstrate that self-supervised features trained on our synthetic dataset achieve competitive performance despite using 60x-760x less data than models trained on large real-world datasets.
arXiv Detail & Related papers (2025-04-15T21:17:39Z) - How Contaminated Is Your Benchmark? Quantifying Dataset Leakage in Large Language Models with Kernel Divergence [23.019102917957152]
Kernel Divergence Score (KDS) is a novel method that evaluates dataset contamination by computing the divergence between the kernel similarity matrix of sample embeddings.<n>KDS demonstrates a near-perfect correlation with contamination levels and outperforms existing baselines.
arXiv Detail & Related papers (2025-02-02T05:50:39Z) - Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models [0.5223954072121659]
Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models.<n>In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference.<n>The proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
arXiv Detail & Related papers (2024-12-29T21:22:24Z) - Predictive Performance Test based on the Exhaustive Nested Cross-Validation for High-dimensional data [7.62566998854384]
Cross-validation is used for several tasks such as estimating the prediction error, tuning the regularization parameter, and selecting the most suitable predictive model.
The K-fold cross-validation is a popular CV method but its limitation is that the risk estimates are highly dependent on the partitioning of the data.
This study presents an alternative novel predictive performance test and valid confidence intervals based on exhaustive nested cross-validation.
arXiv Detail & Related papers (2024-08-06T12:28:16Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.