Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models
- URL: http://arxiv.org/abs/2412.20586v1
- Date: Sun, 29 Dec 2024 21:22:24 GMT
- Title: Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models
- Authors: Yufei Wu, Stefan Radev, Francis Tuerlinckx,
- Abstract summary: Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models.
In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference.
The proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
- Score: 0.5223954072121659
- License:
- Abstract: Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models, which are statistical models representing cognitive processes. In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference (ABI) with neural networks. To this end, we conduct systematic analyses on a toy example and analyze both synthetic and real data using a popular cognitive model, the Drift Diffusion Models (DDM). First, we study the sensitivity of ABI to contaminants with tools from robust statistics: the empirical influence function and the breakdown point. Next, we propose a data augmentation or noise injection approach that incorporates a contamination distribution into the data-generating process during training. We examine several candidate distributions and evaluate their performance and cost in terms of accuracy and efficiency loss relative to a standard estimator. Introducing contaminants from a Cauchy distribution during training considerably increases the robustness of the neural density estimator as measured by bounded influence functions and a much higher breakdown point. Overall, the proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
Related papers
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
This paper demonstrates the vulnerability of AI models often utilized downstream tasks on recognized public genomics datasets.
We undermine model robustness by deploying an attack that focuses on input transformation while mimicking the real data and confusing the model decision-making.
Our empirical findings unequivocally demonstrate a decline in model performance, underscored by diminished accuracy and an upswing in false positives and false negatives.
arXiv Detail & Related papers (2024-01-19T12:04:31Z) - Sensitivity-Aware Amortized Bayesian Inference [8.753065246797561]
Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical analyses.
We propose sensitivity-aware amortized Bayesian inference (SA-ABI), a multifaceted approach to integrate sensitivity analyses into simulation-based inference with neural networks.
We demonstrate the effectiveness of our method in applied modeling problems, ranging from disease outbreak dynamics and global warming thresholds to human decision-making.
arXiv Detail & Related papers (2023-10-17T10:14:10Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.