論文の概要: CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents
- arxiv url: http://arxiv.org/abs/2505.13044v1
- Date: Mon, 19 May 2025 12:33:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.588014
- Title: CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents
- Title(参考訳): CAIM:知的エージェントとの長期インタラクションのための認知AIメモリフレームワークの開発と評価
- Authors: Rebecca Westhäußer, Frederik Berenz, Wolfgang Minker, Sebastian Zepf,
- Abstract要約: 大規模言語モデル(LLM)は人工知能(AI)の分野を進歩させ、インタラクティブシステムのための強力なイネーブラーとなっている。
ユーザに対して適応する必要のある長期的なインタラクションや、常に変化する環境のコンテキスト的知識や理解において、依然として課題に直面しています。
これらの課題を克服するためには、インタラクションセッション間で関連情報を効率的に検索し保存するために、全体論的メモリモデリングが必要である。
コンピュータ化されたモデルで人間の思考プロセスをシミュレートすることを目的とした認知AIは、思考、記憶機構、意思決定といった興味深い側面を強調している。
- 参考スコア(独自算出の注目度): 1.6082737760346446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have advanced the field of artificial intelligence (AI) and are a powerful enabler for interactive systems. However, they still face challenges in long-term interactions that require adaptation towards the user as well as contextual knowledge and understanding of the ever-changing environment. To overcome these challenges, holistic memory modeling is required to efficiently retrieve and store relevant information across interaction sessions for suitable responses. Cognitive AI, which aims to simulate the human thought process in a computerized model, highlights interesting aspects, such as thoughts, memory mechanisms, and decision-making, that can contribute towards improved memory modeling for LLMs. Inspired by these cognitive AI principles, we propose our memory framework CAIM. CAIM consists of three modules: 1.) The Memory Controller as the central decision unit; 2.) the Memory Retrieval, which filters relevant data for interaction upon request; and 3.) the Post-Thinking, which maintains the memory storage. We compare CAIM against existing approaches, focusing on metrics such as retrieval accuracy, response correctness, contextual coherence, and memory storage. The results demonstrate that CAIM outperforms baseline frameworks across different metrics, highlighting its context-awareness and potential to improve long-term human-AI interactions.
- Abstract(参考訳): 大規模言語モデル(LLM)は人工知能(AI)の分野を進歩させ、インタラクティブシステムのための強力なイネーブラーとなっている。
しかし、ユーザへの適応を必要とする長期的なインタラクションや、常に変化する環境のコンテキスト的知識や理解において、依然として課題に直面している。
これらの課題を克服するためには、適切な応答のために、インタラクションセッション間で関連情報を効率的に検索し、保存するために、全体論的メモリモデリングが必要である。
コンピュータ化されたモデルで人間の思考プロセスをシミュレートすることを目的としたCognitive AIは、LLMのメモリモデリングの改善に寄与する思考、記憶機構、意思決定といった興味深い側面を強調している。
こうした認知AIの原則に触発されて、我々は記憶フレームワークCAIMを提案する。
CAIMは3つのモジュールから構成される。
一 中央決定単位としてのメモリコントローラ
2) 要求時のインタラクションのために関連するデータをフィルタリングするメモリ検索,及び
3. メモリストレージを維持するPost-Thinking。
本稿では,検索精度,応答精度,コンテキストコヒーレンス,メモリストレージなどの指標に着目し,CAIMを既存のアプローチと比較する。
その結果、CAIMはさまざまなメトリクスでベースラインフレームワークよりも優れており、そのコンテキスト認識と長期的な人間とAIの相互作用を改善する可能性を強調している。
関連論文リスト
- From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
メモリは情報をエンコードし、保存し、検索するプロセスである。
大規模言語モデル(LLM)の時代において、メモリとは、AIシステムが過去のインタラクションからの情報を保持し、リコールし、使用し、将来の応答とインタラクションを改善する能力である。
論文 参考訳(メタデータ) (2025-04-22T15:05:04Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
大規模言語モデル(LLM)の出現は、人工知能の変革的シフトを触媒している。
これらのエージェントがAI研究と実践的応用をますます推進するにつれて、その設計、評価、継続的な改善は複雑で多面的な課題を呈している。
この調査は、モジュール化された脳にインスパイアされたアーキテクチャ内でインテリジェントエージェントをフレーミングする、包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-03-31T18:00:29Z) - AI-native Memory 2.0: Second Me [26.425003835524123]
SECOND MEはインテリジェントで永続的なメモリオフロードシステムとして機能する。
コンテキスト対応の応答を生成し、必要な情報をプリフィルし、外部システムとのシームレスな通信を容易にする。
さらに、第2のMEは、永続的で文脈的に認識され、自己最適化されたメモリシステムとの人間と世界の相互作用を強化するための重要なステップである。
論文 参考訳(メタデータ) (2025-03-11T07:05:52Z) - In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
大規模言語モデル(LLM)は、オープンエンド対話において大きな進歩を遂げているが、関連する情報の保持と取得ができないため、その有効性は制限されている。
本稿では,長期対話エージェントのための新しいメカニズムであるリフレクティブメモリ管理(RMM)を提案する。
RMMは、LongMemEvalデータセットのメモリ管理なしでベースラインよりも10%以上精度が向上している。
論文 参考訳(メタデータ) (2025-03-11T04:15:52Z) - InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions [104.90258030688256]
本研究は,ストリーミング映像とオーディオ入力とのリアルタイムインタラクションを実現するために,非絡み合いのストリーミング知覚,推論,メモリ機構を導入している。
このプロジェクトは人間のような認知をシミュレートし、多モーダルな大規模言語モデルが時間とともに継続的かつ適応的なサービスを提供できるようにする。
論文 参考訳(メタデータ) (2024-12-12T18:58:30Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。