Graph Alignment for Benchmarking Graph Neural Networks and Learning Positional Encodings
- URL: http://arxiv.org/abs/2505.13087v1
- Date: Mon, 19 May 2025 13:22:17 GMT
- Title: Graph Alignment for Benchmarking Graph Neural Networks and Learning Positional Encodings
- Authors: Adrien Lagesse, Marc Lelarge,
- Abstract summary: We propose a novel benchmarking methodology for graph neural networks (GNNs) based on the graph alignment problem.<n>We frame this problem as a self-supervised learning task and present several methods to generate graph alignment datasets.<n>Our experiments indicate that anisotropic graph neural networks outperform standard convolutional architectures.
- Score: 4.343110120255532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel benchmarking methodology for graph neural networks (GNNs) based on the graph alignment problem, a combinatorial optimization task that generalizes graph isomorphism by aligning two unlabeled graphs to maximize overlapping edges. We frame this problem as a self-supervised learning task and present several methods to generate graph alignment datasets using synthetic random graphs and real-world graph datasets from multiple domains. For a given graph dataset, we generate a family of graph alignment datasets with increasing difficulty, allowing us to rank the performance of various architectures. Our experiments indicate that anisotropic graph neural networks outperform standard convolutional architectures. To further demonstrate the utility of the graph alignment task, we show its effectiveness for unsupervised GNN pre-training, where the learned node embeddings outperform other positional encodings on three molecular regression tasks and achieve state-of-the-art results on the PCQM4Mv2 dataset with significantly fewer parameters. To support reproducibility and further research, we provide an open-source Python package to generate graph alignment datasets and benchmark new GNN architectures.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - GraphAlign: Pretraining One Graph Neural Network on Multiple Graphs via Feature Alignment [30.56443056293688]
Graph self-supervised learning (SSL) holds considerable promise for mining and learning with graph-structured data.
In this work, we aim to pretrain one graph neural network (GNN) on a varied collection of graphs endowed with rich node features.
We present a general GraphAlign method that can be seamlessly integrated into the existing graph SSL framework.
arXiv Detail & Related papers (2024-06-05T05:22:32Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
We design a graph neural network framework for graph classification task by introducing PAS(Pooling Architecture Search)
We improve it based on the GNN topology design method F2GNN to further improve the performance of the model in the graph property prediction task.
It is proved that the NAS method has high generalization ability for multiple tasks and the advantage of our method in processing graph property prediction tasks.
arXiv Detail & Related papers (2022-07-13T08:17:48Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.