Continuous Fair SMOTE -- Fairness-Aware Stream Learning from Imbalanced Data
- URL: http://arxiv.org/abs/2505.13116v1
- Date: Mon, 19 May 2025 13:46:47 GMT
- Title: Continuous Fair SMOTE -- Fairness-Aware Stream Learning from Imbalanced Data
- Authors: Kathrin Lammers, Valerie Vaquet, Barbara Hammer,
- Abstract summary: We propose CFSMOTE as a fairness-aware, continuous SMOTE variant.<n>Unlike other fairness-aware stream learners, CFSMOTE is not optimizing for only one specific fairness metric.<n>Our experiments show significant improvement on several common group fairness metrics in comparison to vanilla C-SMOTE.
- Score: 4.248022697109535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning is increasingly applied in an online fashion to deal with evolving data streams, the fairness of these algorithms is a matter of growing ethical and legal concern. In many use cases, class imbalance in the data also needs to be dealt with to ensure predictive performance. Current fairness-aware stream learners typically attempt to solve these issues through in- or post-processing by focusing on optimizing one specific discrimination metric, addressing class imbalance in a separate processing step. While C-SMOTE is a highly effective model-agnostic pre-processing approach to mitigate class imbalance, as a side effect of this method, algorithmic bias is often introduced. Therefore, we propose CFSMOTE - a fairness-aware, continuous SMOTE variant - as a pre-processing approach to simultaneously address the class imbalance and fairness concerns by employing situation testing and balancing fairness-relevant groups during oversampling. Unlike other fairness-aware stream learners, CFSMOTE is not optimizing for only one specific fairness metric, therefore avoiding potentially problematic trade-offs. Our experiments show significant improvement on several common group fairness metrics in comparison to vanilla C-SMOTE while maintaining competitive performance, also in comparison to other fairness-aware algorithms.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Preventing Discriminatory Decision-making in Evolving Data Streams [8.952662914331901]
Bias in machine learning has rightly received significant attention over the last decade.
Most fair machine learning (fair-ML) work to address bias in decision-making systems has focused solely on the offline setting.
Despite the wide prevalence of online systems in the real world, work on identifying and correcting bias in the online setting is severely lacking.
arXiv Detail & Related papers (2023-02-16T01:20:08Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
Adversarial training (AT) methods are effective against adversarial attacks, yet they introduce severe disparity of accuracy and robustness between different classes.
We propose Adversarial Training (BAT) to address the robust fairness problem.
arXiv Detail & Related papers (2022-09-15T14:44:48Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
We present a simple, yet effective method based on normalisation (FaiReg) for regression problems.
We compare it with two standard methods for fairness, namely data balancing and adversarial training.
The results show the superior performance of diminishing the effects of unfairness better than data balancing.
arXiv Detail & Related papers (2022-02-02T12:26:25Z) - Online Fairness-Aware Learning with Imbalanced Data Streams [9.481178205985396]
We propose ours, an online fairness-aware approach that maintains a valid and fair classifier over the stream.
oursis an online boosting approach that changes the training distribution in an online fashion by monitoring stream's class imbalance.
Experiments on 8 real-world and 1 synthetic datasets demonstrate the superiority of our method over state-of-the-art fairness-aware stream approaches.
arXiv Detail & Related papers (2021-08-13T13:31:42Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
We develop a framework for fair semi-supervised learning, which is formulated as an optimization problem.
We theoretically analyze the source of discrimination in semi-supervised learning via bias, variance and noise decomposition.
Our method is able to achieve fair semi-supervised learning, and reach a better trade-off between accuracy and fairness than fair supervised learning.
arXiv Detail & Related papers (2020-09-14T04:25:59Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.