論文の概要: Joint Depth and Reflectivity Estimation using Single-Photon LiDAR
- arxiv url: http://arxiv.org/abs/2505.13250v1
- Date: Mon, 19 May 2025 15:33:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.700342
- Title: Joint Depth and Reflectivity Estimation using Single-Photon LiDAR
- Title(参考訳): 単一光子LiDARによる関節深さと反射率の推定
- Authors: Hashan K. Weerasooriya, Prateek Chennuri, Weijian Zhang, Istvan Gyongy, Stanley H. Chan,
- Abstract要約: 高精度3Dビジョンタスクの先駆技術として,シングルフォト光検出・照準技術 (SP-LiDAR) が登場している。
タイムスタンプは、パルス走行時間(深度)と、物体によって反射される光子の数(反射率)の2つの相補的な情報を符号化する
- 参考スコア(独自算出の注目度): 9.842115005951651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-Photon Light Detection and Ranging (SP-LiDAR is emerging as a leading technology for long-range, high-precision 3D vision tasks. In SP-LiDAR, timestamps encode two complementary pieces of information: pulse travel time (depth) and the number of photons reflected by the object (reflectivity). Existing SP-LiDAR reconstruction methods typically recover depth and reflectivity separately or sequentially use one modality to estimate the other. Moreover, the conventional 3D histogram construction is effective mainly for slow-moving or stationary scenes. In dynamic scenes, however, it is more efficient and effective to directly process the timestamps. In this paper, we introduce an estimation method to simultaneously recover both depth and reflectivity in fast-moving scenes. We offer two contributions: (1) A theoretical analysis demonstrating the mutual correlation between depth and reflectivity and the conditions under which joint estimation becomes beneficial. (2) A novel reconstruction method, "SPLiDER", which exploits the shared information to enhance signal recovery. On both synthetic and real SP-LiDAR data, our method outperforms existing approaches, achieving superior joint reconstruction quality.
- Abstract(参考訳): 長距離高精度3Dビジョンタスクにおいて,SP-LiDARが主要な技術として登場している。
SP-LiDARでは、タイムスタンプは2つの補完的な情報を符号化する。
既存のSP-LiDAR再構成法は、通常、深さと反射率を別々に、あるいは連続的に1つのモードを使って推定する。
さらに,従来の3次元ヒストグラム構造は,主にスローモーションや静止シーンに有効である。
しかし、動的なシーンでは、タイムスタンプを直接処理することがより効率的で効果的である。
本稿では,高速移動シーンにおける深度と反射率を同時に再現する推定手法を提案する。
1) 深度と反射率の相互相関と, 共同推定が有用となる条件の理論的解析を行った。
2)信号の回復を促進するために共有情報を利用する新しい再構成手法「SPLiDER」を提案する。
本手法は,SP-LiDARデータと実SP-LiDARデータの両方において,既存の手法よりも優れ,より優れた関節再建品質を実現する。
関連論文リスト
- Seurat: From Moving Points to Depth [66.65189052568209]
本研究では,2次元軌跡の空間的関係と時間的変化を調べ,相対的な深度を推定する手法を提案する。
提案手法は,様々な領域にわたる時間的スムーズかつ高精度な深度予測を実現する。
論文 参考訳(メタデータ) (2025-04-20T17:37:02Z) - IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
画像から幾何学的および物質的情報をキャプチャすることは、コンピュータビジョンとグラフィックスの基本的な課題である。
従来の最適化に基づく手法では、密集した多視点入力から幾何学、材料特性、環境照明を再構築するために数時間の計算時間を必要とすることが多い。
IDArbは、様々な照明条件下で、任意の画像に対して本質的な分解を行うために設計された拡散モデルである。
論文 参考訳(メタデータ) (2024-12-16T18:52:56Z) - Multi-scale Restoration of Missing Data in Optical Time-series Images with Masked Spatial-Temporal Attention Network [0.6675733925327885]
リモートセンシング画像に欠落した値を出力する既存の方法は、補助情報を完全に活用できない。
本稿では,時系列リモートセンシング画像の再構成のためのMS2という,深層学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T09:05:05Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - Few-shot Non-line-of-sight Imaging with Signal-surface Collaborative
Regularization [18.466941045530408]
非視線イメージング技術は、多重反射光からターゲットを再構成することを目的としている。
最小限の測定回数でノイズロバストを再現する信号表面の協調正規化フレームワークを提案する。
我々のアプローチは、救助活動や自律運転といったリアルタイム非視線画像アプリケーションにおいて大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-11-21T11:19:20Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
一つのビデオから多視点深度を推定する新しい手法を提案する。
提案手法は,新しいEpipolar Spatio-Temporal Transformer(EST)を用いて時間的コヒーレントな深度推定を行う。
最近のMixture-of-Expertsモデルにインスパイアされた計算コストを削減するため、我々はコンパクトなハイブリッドネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-26T04:04:21Z) - Deep Non-Line-of-Sight Reconstruction [18.38481917675749]
本稿では,再構成問題を効率的に解くために,畳み込みフィードフォワードネットワークを用いる。
本研究では,自動エンコーダアーキテクチャを設計し,一貫した画像を直接深度マップ表現にマッピングする。
筆者らのフィードフォワードネットワークは,合成データのみに基づいて訓練されているものの,SPADセンサの計測データに一般化し,モデルに基づく再構成手法と競合する結果が得られることを示した。
論文 参考訳(メタデータ) (2020-01-24T16:05:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。