Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
- URL: http://arxiv.org/abs/2505.13308v1
- Date: Mon, 19 May 2025 16:26:02 GMT
- Title: Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
- Authors: Hengli Li, Chenxi Li, Tong Wu, Xuekai Zhu, Yuxuan Wang, Zhaoxin Yu, Eric Hanchen Jiang, Song-Chun Zhu, Zixia Jia, Ying Nian Wu, Zilong Zheng,
- Abstract summary: We introduce LatentSeek, a framework that enhances reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space.<n>LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024.<n>Results show that LatentSeek consistently outperforms strong baselines.
- Score: 82.75174050101108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Related papers
- Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations.<n>We first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability.<n>We introduce a new SAE training algorithm based on bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity.
arXiv Detail & Related papers (2025-06-16T20:58:05Z) - Scaling over Scaling: Exploring Test-Time Scaling Plateau in Large Reasoning Models [7.2703757624760526]
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling.<n>As we push these scaling boundaries, understanding the practical limits and achieving optimal resource allocation becomes a critical challenge.<n>In this paper, we investigate the scaling plateau of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM)
arXiv Detail & Related papers (2025-05-26T20:58:45Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - How Difficulty-Aware Staged Reinforcement Learning Enhances LLMs' Reasoning Capabilities: A Preliminary Experimental Study [16.441081996257576]
This paper presents a rigorous experimental investigation into how difficulty-aware staged reinforcement learning strategies can substantially improve reasoning performance.<n>We show that strategically selecting training data according to well-defined difficulty levels markedly enhances RL optimization.<n>We will open-source our datasets on GitHub and Hugging Face.
arXiv Detail & Related papers (2025-04-01T14:18:38Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - Iterative Deepening Sampling as Efficient Test-Time Scaling [27.807695570974644]
Recent reasoning models, such as OpenAI's O1 series, have demonstrated exceptional performance on complex reasoning tasks.<n>We propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
arXiv Detail & Related papers (2025-02-08T04:39:51Z) - SETS: Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling [44.11609084435251]
This paper introduces Self-Enhanced Test-Time Scaling (SETS), a new approach that overcomes limitations by strategically combining parallel and sequential techniques.<n>SETS exploits the inherent self-verification and self-correction capabilities of Large Language Models, unifying sampling, verification, and correction within a single framework.
arXiv Detail & Related papers (2025-01-31T17:03:16Z) - CFSSeg: Closed-Form Solution for Class-Incremental Semantic Segmentation of 2D Images and 3D Point Clouds [9.765104818970277]
Class-incremental semantic segmentation (CSS) requires incrementally learning new semantic categories while retaining prior knowledge.<n>We propose CFSSeg, a novel exemplar-free approach that leverages a closed-form solution.<n>This eliminates the need for iterative gradient-based optimization and storage of past data, requiring only a single pass through new samples per step.
arXiv Detail & Related papers (2024-12-14T13:39:56Z) - Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability [53.51560766150442]
Critical tokens are elements within reasoning trajectories that significantly influence incorrect outcomes.<n>We present a novel framework for identifying these tokens through rollout sampling.<n>We show that identifying and replacing critical tokens significantly improves model accuracy.
arXiv Detail & Related papers (2024-11-29T18:58:22Z) - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters [27.656263126925815]
We study the scaling of inference-time computation in LLMs.
We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt.
arXiv Detail & Related papers (2024-08-06T17:35:05Z) - Temporal Scaling Law for Large Language Models [57.83580734589091]
We propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up.<n>In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position.<n>We derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law.
arXiv Detail & Related papers (2024-04-27T05:49:11Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.