Iterative Deepening Sampling as Efficient Test-Time Scaling
- URL: http://arxiv.org/abs/2502.05449v2
- Date: Sun, 01 Jun 2025 20:14:16 GMT
- Title: Iterative Deepening Sampling as Efficient Test-Time Scaling
- Authors: Weizhe Chen, Sven Koenig, Bistra Dilkina,
- Abstract summary: Recent reasoning models, such as OpenAI's O1 series, have demonstrated exceptional performance on complex reasoning tasks.<n>We propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
- Score: 27.807695570974644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent reasoning models, such as OpenAI's O1 series, have demonstrated exceptional performance on complex reasoning tasks and revealed new test-time scaling laws. Inspired by this, many people have been studying how to train models to achieve effective self-evaluation and self-correction to further enable the scaling paradigm. However, less studied is how to efficiently scale test-time compute from a fixed model, and this remains a challenge. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving at test time, which can also subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how systematically triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
Related papers
- Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability [16.441081996257576]
We propose leveraging reasoning-intensive models to improve less computationally demanding, non-reasoning models.
We demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
arXiv Detail & Related papers (2025-04-13T16:26:56Z) - Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead [33.011660907969706]
Inference-time scaling can enhance the reasoning capabilities of large language models.<n>We investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks.
arXiv Detail & Related papers (2025-03-31T23:40:28Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
Generative retrieval reformulates retrieval as an autoregressive generation task, where large language models generate target documents directly from a query.<n>We systematically investigate training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence performance.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)
We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.
OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.
However, improvement is plateauing due to the exhaustion of readily available high-quality data.
We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - SETS: Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling [44.11609084435251]
This paper introduces Self-Enhanced Test-Time Scaling (SETS), a new approach that overcomes limitations by strategically combining parallel and sequential techniques.<n>SETS exploits the inherent self-verification and self-correction capabilities of Large Language Models, unifying sampling, verification, and correction within a single framework.
arXiv Detail & Related papers (2025-01-31T17:03:16Z) - B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners [18.960920426485163]
Self-improvement has emerged as a primary method for enhancing performance.<n>We identify and propose methods to monitor two pivotal factors in this iterative process.<n>We introduce B-STaR, a Self-Taught Reasoning framework that adjusts configurations across iterations to balance exploration and exploitation.
arXiv Detail & Related papers (2024-12-23T03:58:34Z) - Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models [10.449015816015566]
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference.
We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap.
We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance.
arXiv Detail & Related papers (2024-12-03T18:47:26Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
We introduce a novel verification method based on Twisted Sequential Monte Carlo (TSMC)<n>We apply TSMC to Large Language Models by estimating the expected future rewards at partial solutions.<n>This approach results in a more straightforward training target that eliminates the need for step-wise human annotations.
arXiv Detail & Related papers (2024-10-02T18:17:54Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Re-ReST: Reflection-Reinforced Self-Training for Language Agents [101.22559705696885]
Self-training in language agents can generate supervision from the agent itself.
We present Reflection-Reinforced Self-Training (Re-ReST), which uses a textitreflector to refine low-quality generated samples.
arXiv Detail & Related papers (2024-06-03T16:21:38Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.