論文の概要: Denoising Diffusion Probabilistic Model for Point Cloud Compression at Low Bit-Rates
- arxiv url: http://arxiv.org/abs/2505.13316v1
- Date: Mon, 19 May 2025 16:29:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.733536
- Title: Denoising Diffusion Probabilistic Model for Point Cloud Compression at Low Bit-Rates
- Title(参考訳): 低ビットレートにおける点雲圧縮の拡散確率モデル
- Authors: Gabriele Spadaro, Alberto Presta, Jhony H. Giraldo, Marco Grangetto, Wei Hu, Giuseppe Valenzise, Attilio Fiandrotti, Enzo Tartaglione,
- Abstract要約: 本稿では,ポイントクラウド圧縮のためのデノイング拡散確率モデル(Denoising Diffusion Probabilistic Model)アーキテクチャを提案する。
PointNetエンコーダは生成条件ベクトルを生成し、学習可能なベクトル量子化器を介して量子化する。
ShapeNetとModelNet40の実験では、標準化と最先端のアプローチと比較して、低速度での速度歪みが改善された。
- 参考スコア(独自算出の注目度): 22.076896401919683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient compression of low-bit-rate point clouds is critical for bandwidth-constrained applications. However, existing techniques mainly focus on high-fidelity reconstruction, requiring many bits for compression. This paper proposes a "Denoising Diffusion Probabilistic Model" (DDPM) architecture for point cloud compression (DDPM-PCC) at low bit-rates. A PointNet encoder produces the condition vector for the generation, which is then quantized via a learnable vector quantizer. This configuration allows to achieve a low bitrates while preserving quality. Experiments on ShapeNet and ModelNet40 show improved rate-distortion at low rates compared to standardized and state-of-the-art approaches. We publicly released the code at https://github.com/EIDOSLAB/DDPM-PCC.
- Abstract(参考訳): 低ビットレートの点雲の効率的な圧縮は、帯域幅制限されたアプリケーションにとって重要である。
しかし、既存の技術は主に高忠実度再構築に重点を置いており、圧縮には多くのビットを必要とする。
本稿では,低ビットレートでポイントクラウド圧縮(DDPM-PCC)を行うDDPMアーキテクチャを提案する。
PointNetエンコーダは生成条件ベクトルを生成し、学習可能なベクトル量子化器を介して量子化する。
この構成により、品質を維持しながら低ビットレートを実現することができる。
ShapeNetとModelNet40の実験では、標準化と最先端のアプローチと比較して、低速度での速度歪みが改善された。
コードについては、https://github.com/EIDOSLAB/DDPM-PCC.comで公開しました。
関連論文リスト
- Point Cloud Compression with Bits-back Coding [32.9521748764196]
本稿では,深層学習に基づく確率モデルを用いて,点雲情報のシャノンエントロピーを推定する。
点雲データセットのエントロピーを推定すると、学習されたCVAEモデルを用いて点雲の幾何学的属性を圧縮する。
本手法の新規性は,CVAEの学習潜在変数モデルを用いて点雲データを圧縮することである。
論文 参考訳(メタデータ) (2024-10-09T06:34:48Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
本研究では,高密度点雲のエンドツーエンド圧縮法を提案する。
提案手法は,周波数サンプリングモジュール,適応スケール特徴抽出モジュール,幾何支援モジュール,大域的ハイパープライアエントロピーモデルを組み合わせた。
論文 参考訳(メタデータ) (2024-09-16T13:59:43Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
勾配勾配勾配は入力のスパース構造を完全に無視する解に収束することを示す。
浅層構造にデノナイジング関数を付加することにより,スパースデータの圧縮におけるガウス性能の改善方法を示す。
CIFAR-10 や MNIST などの画像データセットに対して,本研究の成果を検証した。
論文 参考訳(メタデータ) (2024-02-07T16:32:29Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
我々は、属性を段階的にマルチスケールの潜在空間に投影するエンドツーエンドのクラウド属性符号化法(MNeT)を構築した。
MVUB と MPEG の点群に対して本手法の有効性を検証し,提案手法が最近提案した手法よりも優れており,最新の G-PCC バージョン 14 と同等であることを示す。
論文 参考訳(メタデータ) (2023-03-11T23:39:30Z) - Single-path Bit Sharing for Automatic Loss-aware Model Compression [126.98903867768732]
シングルパスビット共有(SBS)は、計算コストを大幅に削減し、有望な性能を達成する。
SBS圧縮MobileNetV2は、Top-1の精度がわずか0.1%低下した22.6倍ビット演算(BOP)を実現する。
論文 参考訳(メタデータ) (2021-01-13T08:28:21Z) - OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression [77.8842824702423]
本稿では,LiDAR点雲のメモリフットプリントを削減するための新しいディープ圧縮アルゴリズムを提案する。
本手法は,メモリフットプリントを低減するために,点間の間隔と構造的冗長性を利用する。
我々のアルゴリズムは、自動運転車などのアプリケーションにおいて、LiDARポイントのオンボードおよびオフボードストレージを減らすために使用できる。
論文 参考訳(メタデータ) (2020-05-14T17:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。