CoT-Kinetics: A Theoretical Modeling Assessing LRM Reasoning Process
- URL: http://arxiv.org/abs/2505.13408v1
- Date: Mon, 19 May 2025 17:44:26 GMT
- Title: CoT-Kinetics: A Theoretical Modeling Assessing LRM Reasoning Process
- Authors: Jinhe Bi, Danqi Yan, Yifan Wang, Wenke Huang, Haokun Chen, Guancheng Wan, Mang Ye, Xun Xiao, Hinrich Schuetze, Volker Tresp, Yunpu Ma,
- Abstract summary: Recent Large Reasoning Models significantly improve the reasoning ability of Large Language Models.<n>We present a novel approach towards establishing a CoT-Kinetics energy equation.<n>Our CoT-Kinetics energy assigns a scalar score to evaluate specifically the soundness of the reasoning phase.
- Score: 45.88054259124436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Large Reasoning Models significantly improve the reasoning ability of Large Language Models by learning to reason, exhibiting the promising performance in solving complex tasks. LRMs solve tasks that require complex reasoning by explicitly generating reasoning trajectories together with answers. Nevertheless, judging the quality of such an output answer is not easy because only considering the correctness of the answer is not enough and the soundness of the reasoning trajectory part matters as well. Logically, if the soundness of the reasoning part is poor, even if the answer is correct, the confidence of the derived answer should be low. Existing methods did consider jointly assessing the overall output answer by taking into account the reasoning part, however, their capability is still not satisfactory as the causal relationship of the reasoning to the concluded answer cannot properly reflected. In this paper, inspired by classical mechanics, we present a novel approach towards establishing a CoT-Kinetics energy equation. Specifically, our CoT-Kinetics energy equation formulates the token state transformation process, which is regulated by LRM internal transformer layers, as like a particle kinetics dynamics governed in a mechanical field. Our CoT-Kinetics energy assigns a scalar score to evaluate specifically the soundness of the reasoning phase, telling how confident the derived answer could be given the evaluated reasoning. As such, the LRM's overall output quality can be accurately measured, rather than a coarse judgment (e.g., correct or incorrect) anymore.
Related papers
- Unveiling Confirmation Bias in Chain-of-Thought Reasoning [12.150655660758359]
Chain-of-thought (CoT) prompting has been widely adopted to enhance the reasoning capabilities of large language models (LLMs)<n>This work presents a novel perspective to understand CoT behavior through the lens of textitconfirmation bias in cognitive psychology.
arXiv Detail & Related papers (2025-06-14T01:30:17Z) - Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers [76.42159902257677]
We argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR)<n>OCR drives both generalization and hallucination, depending on whether the associated concepts are causally related.<n>Our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
arXiv Detail & Related papers (2025-06-12T16:50:45Z) - The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity [16.266145641151375]
Large Reasoning Models generate detailed thinking processes before providing answers.<n>We show that LRMs face a complete accuracy collapse beyond certain complexities.<n>We also investigate the reasoning traces in more depth, studying the patterns of explored solutions.
arXiv Detail & Related papers (2025-06-07T22:42:29Z) - When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs [16.659986373052217]
Chain-of-thought reasoning can significantly degrade instruction-following accuracy.<n>This is the first work to systematically expose reasoning-induced failures in instruction-following.
arXiv Detail & Related papers (2025-05-16T16:36:00Z) - Chain-of-Probe: Examining the Necessity and Accuracy of CoT Step-by-Step [81.50681925980135]
We propose a method to probe changes in the mind during the model's reasoning.<n>By analyzing patterns in mind change, we examine the correctness of the model's reasoning.<n>Our validation reveals that many responses, although correct in their final answer, contain errors in their reasoning process.
arXiv Detail & Related papers (2024-06-23T15:50:22Z) - Mitigating Misleading Chain-of-Thought Reasoning with Selective Filtering [59.495717939664246]
Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions.
We propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain.
SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks.
arXiv Detail & Related papers (2024-03-28T06:28:35Z) - Measuring Faithfulness in Chain-of-Thought Reasoning [19.074147845029355]
Large language models (LLMs) perform better when they produce step-by-step, "Chain-of-Thought" (CoT) reasoning before answering a question.
It is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question)
We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT.
arXiv Detail & Related papers (2023-07-17T01:08:39Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - SCOTT: Self-Consistent Chain-of-Thought Distillation [68.40232422158569]
Large language models (LMs) generate free-text rationales for their predictions via chain-of-thought prompting.
We propose a faithful knowledge distillation method to learn a small, self-consistent CoT model from a teacher model that is orders of magnitude larger.
To ensure faithful distillation, we use the teacher-generated rationales to learn a student LM with a counterfactual reasoning objective.
arXiv Detail & Related papers (2023-05-03T03:47:00Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.