Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling
- URL: http://arxiv.org/abs/2505.13413v1
- Date: Mon, 19 May 2025 17:48:04 GMT
- Title: Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling
- Authors: Dongyi Wang, Yuanwei Jiang, Zhenyi Zhang, Xiang Gu, Peijie Zhou, Jian Sun,
- Abstract summary: A destructive measurement technique and cell proliferation/death result in unpaired and unbalanced data between snapshots.<n>We propose Velocity-Growth Flow Matching, a novel paradigm that jointly learns state transition and mass growth of single-cell populations.<n> VGFM builds an ideal single-cell dynamics containing velocity of state and growth of mass, driven by a presented two-period dynamic understanding of the static semi-relaxed optimal transport.
- Score: 36.0492773489553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the underlying dynamics of single cells from snapshot data has gained increasing attention in scientific and machine learning research. The destructive measurement technique and cell proliferation/death result in unpaired and unbalanced data between snapshots, making the learning of the underlying dynamics challenging. In this paper, we propose joint Velocity-Growth Flow Matching (VGFM), a novel paradigm that jointly learns state transition and mass growth of single-cell populations via flow matching. VGFM builds an ideal single-cell dynamics containing velocity of state and growth of mass, driven by a presented two-period dynamic understanding of the static semi-relaxed optimal transport, a mathematical tool that seeks the coupling between unpaired and unbalanced data. To enable practical usage, we approximate the ideal dynamics using neural networks, forming our joint velocity and growth matching framework. A distribution fitting loss is also employed in VGFM to further improve the fitting performance for snapshot data. Extensive experimental results on both synthetic and real datasets demonstrate that VGFM can capture the underlying biological dynamics accounting for mass and state variations over time, outperforming existing approaches for single-cell dynamics modeling.
Related papers
- STAGED: A Multi-Agent Neural Network for Learning Cellular Interaction Dynamics [8.659754814655303]
Single-cell technology has improved our understanding of cellular states and subpopulations in various tissues under normal and diseased conditions.<n>With spatial transcriptomics, we can represent cellular organization, along with dynamic cell-cell interactions that lead to changes in cell state.<n>We introduce Spatio Temporal Agent-Based Graph Evolution Dynamics(STAGED) to model intercellular communication, and its effect on the intracellular gene regulatory network.
arXiv Detail & Related papers (2025-07-15T18:46:07Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Modeling Cell Dynamics and Interactions with Unbalanced Mean Field Schrödinger Bridge [9.229946487941056]
CytoBridge is a deep learning algorithm designed to approximate the Unbalanced MeanField Schr"odinger Bridge (UMFSB) problem.<n>By explicitly modeling cellular transitions, proliferation, and interactions through neural networks, CytoBridge offers the flexibility to learn these processes directly from data.
arXiv Detail & Related papers (2025-05-16T12:55:13Z) - Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models [3.780691701083858]
This study presents an innovative integration of High-Order Singular Value Decomposition with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics.<n>The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes.<n>The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics.
arXiv Detail & Related papers (2025-04-09T10:56:03Z) - Combined Optimization of Dynamics and Assimilation with End-to-End Learning on Sparse Observations [1.492574139257933]
CODA is an end-to-end optimization scheme for jointly learning dynamics and DA directly from sparse and noisy observations.
We introduce a novel learning objective that combines unrolled auto-regressive dynamics with the data- and self-consistency terms of weak-constraint 4Dvar DA.
arXiv Detail & Related papers (2024-09-11T09:36:15Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.