AgentSGEN: Multi-Agent LLM in the Loop for Semantic Collaboration and GENeration of Synthetic Data
- URL: http://arxiv.org/abs/2505.13466v1
- Date: Wed, 07 May 2025 22:43:33 GMT
- Title: AgentSGEN: Multi-Agent LLM in the Loop for Semantic Collaboration and GENeration of Synthetic Data
- Authors: Vu Dinh Xuan, Hao Vo, David Murphy, Hoang D. Nguyen,
- Abstract summary: scarcity of data presents a major obstacle to training AI systems for safety-critical applications, such as construction safety.<n>We propose a novel multi-agent framework that employs an iterative, in-the-loop collaboration between two agents.<n> powered by LLM's capabilities to reasoning and common-sense knowledge, this collaborative design produces synthetic images tailored to safety-critical scenarios.
- Score: 3.3186271052113843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of data depicting dangerous situations presents a major obstacle to training AI systems for safety-critical applications, such as construction safety, where ethical and logistical barriers hinder real-world data collection. This creates an urgent need for an end-to-end framework to generate synthetic data that can bridge this gap. While existing methods can produce synthetic scenes, they often lack the semantic depth required for scene simulations, limiting their effectiveness. To address this, we propose a novel multi-agent framework that employs an iterative, in-the-loop collaboration between two agents: an Evaluator Agent, acting as an LLM-based judge to enforce semantic consistency and safety-specific constraints, and an Editor Agent, which generates and refines scenes based on this guidance. Powered by LLM's capabilities to reasoning and common-sense knowledge, this collaborative design produces synthetic images tailored to safety-critical scenarios. Our experiments suggest this design can generate useful scenes based on realistic specifications that address the shortcomings of prior approaches, balancing safety requirements with visual semantics. This iterative process holds promise for delivering robust, aesthetically sound simulations, offering a potential solution to the data scarcity challenge in multimedia safety applications.
Related papers
- AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models [23.916663925674737]
Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked.<n>We propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis.<n>Our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics.
arXiv Detail & Related papers (2025-05-29T03:02:18Z) - Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation [70.62656296780074]
We propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe.<n>A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts.<n>Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality.
arXiv Detail & Related papers (2025-05-27T21:34:40Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - Advancing Neural Network Verification through Hierarchical Safety Abstract Interpretation [52.626086874715284]
We introduce a novel problem formulation called Abstract DNN-Verification, which verifies a hierarchical structure of unsafe outputs.<n>By leveraging abstract interpretation and reasoning about output reachable sets, our approach enables assessing multiple safety levels during the formal verification process.<n>Our contributions include a theoretical exploration of the relationship between our novel abstract safety formulation and existing approaches.
arXiv Detail & Related papers (2025-05-08T13:29:46Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection [0.0]
Large Language Models (LLMs) are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope.<n>Current guardrails suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production.<n>We introduce a flexible, data-free guardrail development methodology that addresses these challenges.
arXiv Detail & Related papers (2024-11-20T00:31:23Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Concept-Guided LLM Agents for Human-AI Safety Codesign [6.603483691167379]
Generative AI is increasingly important in software engineering, including safety engineering, where its use ensures that software does not cause harm to people.
It is crucial to develop more advanced and sophisticated approaches that can effectively address the complexities and safety concerns of software systems.
We present an efficient, hybrid strategy to leverage Large Language Models for safety analysis and Human-AI codesign.
arXiv Detail & Related papers (2024-04-03T11:37:01Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.