AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models
- URL: http://arxiv.org/abs/2505.23020v1
- Date: Thu, 29 May 2025 03:02:18 GMT
- Title: AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models
- Authors: Jinchuan Zhang, Lu Yin, Yan Zhou, Songlin Hu,
- Abstract summary: Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked.<n>We propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis.<n>Our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics.
- Score: 23.916663925674737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.
Related papers
- Interpretable Risk Mitigation in LLM Agent Systems [0.0]
We explore agent behaviour in a toy, game-theoretic environment based on a variation of the Iterated Prisoner's Dilemma.<n>We introduce a strategy-modification method-independent of both the game and the prompt-by steering the residual stream with interpretable features extracted from a sparse autoencoder latent space.
arXiv Detail & Related papers (2025-05-15T19:22:11Z) - Representation Bending for Large Language Model Safety [27.842146980762934]
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks pose significant challenges.<n>This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs.<n>RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates.
arXiv Detail & Related papers (2025-04-02T09:47:01Z) - The Rise of Darkness: Safety-Utility Trade-Offs in Role-Playing Dialogue Agents [29.974647411289826]
Large Language Models (LLMs) have made remarkable advances in role-playing dialogue agents, demonstrating their utility in character simulations.<n>It remains challenging for these agents to balance character portrayal utility with content safety because this essential character simulation often comes with the risk of generating unsafe content.<n>We propose a novel Adaptive Dynamic Multi-Preference (ADMP) method, which dynamically adjusts safety-utility preferences based on the degree of risk coupling.
arXiv Detail & Related papers (2025-02-28T06:18:50Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Refining Input Guardrails: Enhancing LLM-as-a-Judge Efficiency Through Chain-of-Thought Fine-Tuning and Alignment [2.9775785740619254]
Large Language Models (LLMs) have demonstrated powerful capabilities that render them valuable in different applications, including conversational AI products.<n>It is paramount to ensure the security and reliability of these products by mitigating their vulnerabilities towards malicious user interactions.<n>We present a study on the efficacy of fine-tuning and aligning Chain-of-Thought (CoT) responses of different LLMs that serve as input moderation guardrails.
arXiv Detail & Related papers (2025-01-22T18:40:57Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)<n>To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts [88.96201324719205]
Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training.<n>We identify a new safety vulnerability in LLMs, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms.<n>We introduce a novel attack method, textitActorBreaker, which identifies actors related to toxic prompts within pre-training distribution.
arXiv Detail & Related papers (2024-10-14T16:41:49Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Evil Geniuses: Delving into the Safety of LLM-based Agents [35.49857256840015]
Large language models (LLMs) have revitalized in large language models (LLMs)
This paper delves into the safety of LLM-based agents from three perspectives: agent quantity, role definition, and attack level.
arXiv Detail & Related papers (2023-11-20T15:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.