Continuous Domain Generalization
- URL: http://arxiv.org/abs/2505.13519v1
- Date: Sat, 17 May 2025 12:39:45 GMT
- Title: Continuous Domain Generalization
- Authors: Zekun Cai, Yiheng Yao, Guangji Bai, Renhe Jiang, Xuan Song, Ryosuke Shibasaki, Liang Zhao,
- Abstract summary: This paper introduces the task of Continuous Domain Generalization (CDG), which aims to generalize predictive models to unseen domains.<n>We present a principled framework grounded in geometric and algebraic theory, showing that optimal model parameters across domains lie on a low-dimensional manifold.<n>Experiments on synthetic and real-world datasets-including remote sensing, scientific documents, and traffic forecasting-demonstrate that our method significantly outperforms existing baselines in generalization accuracy and robustness under descriptor imperfections.
- Score: 20.41728538658197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data distributions often shift continuously across multiple latent factors such as time, geography, and socioeconomic context. However, existing domain generalization approaches typically treat domains as discrete or evolving along a single axis (e.g., time), which fails to capture the complex, multi-dimensional nature of real-world variation. This paper introduces the task of Continuous Domain Generalization (CDG), which aims to generalize predictive models to unseen domains defined by arbitrary combinations of continuous variation descriptors. We present a principled framework grounded in geometric and algebraic theory, showing that optimal model parameters across domains lie on a low-dimensional manifold. To model this structure, we propose a Neural Lie Transport Operator (NeuralLTO), which enables structured parameter transitions by enforcing geometric continuity and algebraic consistency. To handle noisy or incomplete domain descriptors, we introduce a gating mechanism to suppress irrelevant dimensions and a local chart-based strategy for robust generalization. Extensive experiments on synthetic and real-world datasets-including remote sensing, scientific documents, and traffic forecasting-demonstrate that our method significantly outperforms existing baselines in generalization accuracy and robustness under descriptor imperfections.
Related papers
- Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains [50.66049136093248]
We develop a time-aware structural causal model (SCM) that incorporates dynamic causal factors and the causal mechanism drifts.<n>We show that our method can yield the optimal causal predictor for each time domain.<n>Results on both synthetic and real-world datasets exhibit that SYNC can achieve superior temporal generalization performance.
arXiv Detail & Related papers (2025-06-21T14:05:37Z) - Moment Alignment: Unifying Gradient and Hessian Matching for Domain Generalization [13.021311628351423]
Domain generalization (DG) seeks to develop models that generalize well to unseen target domains.<n>One line of research in DG focuses on aligning domain-level gradients and Hessians to enhance generalization.<n>We introduce textbfClosed-Form textbfMoment textbfAlignment (CMA), a novel DG algorithm that aligns domain-level gradients and Hessians in closed-form.
arXiv Detail & Related papers (2025-06-09T02:51:36Z) - Topological Generalization Bounds for Discrete-Time Stochastic Optimization Algorithms [15.473123662393169]
Deep neural networks (DNNs) show remarkable generalization properties.<n>The source of these capabilities remains elusive, defying the established statistical learning theory.<n>Recent studies have revealed that properties of training trajectories can be indicative of generalization.
arXiv Detail & Related papers (2024-07-11T17:56:03Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
We introduce a simple but effective approach that aims to learn a fair and invariant classifier.
By augmenting various synthetic data domains through the model, we learn a fair and invariant classifier in source domains.
This classifier can then be generalized to unknown target domains, maintaining both model prediction and fairness concerns.
arXiv Detail & Related papers (2023-11-23T05:52:00Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
Domain generalization aims to learn a robust model from source domains that generalize well on unseen target domains.
Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains.
We propose an online one-stage Cross Contrasting Feature Perturbation framework to simulate domain shift.
arXiv Detail & Related papers (2023-07-24T03:27:41Z) - PAC-Chernoff Bounds: Understanding Generalization in the Interpolation Regime [6.645111950779666]
This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits perfect tightness for interpolators.<n>We present a unified theoretical framework revealing why certain interpolators show an exceptional generalization, while others falter.
arXiv Detail & Related papers (2023-06-19T14:07:10Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Super-model ecosystem: A domain-adaptation perspective [101.76769818069072]
This paper attempts to establish the theoretical foundation for the emerging super-model paradigm via domain adaptation.
Super-model paradigms help reduce computational and data cost and carbon emission, which is critical to AI industry.
arXiv Detail & Related papers (2022-08-30T09:09:43Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.