Exploring Federated Pruning for Large Language Models
- URL: http://arxiv.org/abs/2505.13547v1
- Date: Mon, 19 May 2025 03:41:54 GMT
- Title: Exploring Federated Pruning for Large Language Models
- Authors: Pengxin Guo, Yinong Wang, Wei Li, Mengting Liu, Ming Li, Jinkai Zheng, Liangqiong Qu,
- Abstract summary: We introduce FedPrLLM, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs.<n>In FedPrLLM, each client only needs to calculate a pruning mask matrix based on its local calibration data and share it with the server to prune the global model.<n>We conduct extensive experiments to explore various possibilities within the FedPrLLM framework, including different comparison groups, pruning strategies, and the decision to scale weights.
- Score: 11.429295161800242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM pruning has emerged as a promising technology for compressing LLMs, enabling their deployment on resource-limited devices. However, current methodologies typically require access to public calibration samples, which can be challenging to obtain in privacy-sensitive domains. To address this issue, we introduce FedPrLLM, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs. In FedPrLLM, each client only needs to calculate a pruning mask matrix based on its local calibration data and share it with the server to prune the global model. This approach allows for collaborative pruning of the global model with the knowledge of each client while maintaining local data privacy. Additionally, we conduct extensive experiments to explore various possibilities within the FedPrLLM framework, including different comparison groups, pruning strategies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields. Our code is available at https://github.com/Pengxin-Guo/FedPrLLM.
Related papers
- VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs [8.920340856412087]
VFLAIR-LLM is a lightweight split learning framework for Large Language Models.<n>We benchmark 5 attacks and 9 defenses under various Split Learning for LLM(SL-LLM) settings.
arXiv Detail & Related papers (2025-08-05T05:20:33Z) - Learning Obfuscations Of LLM Embedding Sequences: Stained Glass Transform [1.8749305679160366]
We introduce the Stained Glass Transform, a learned, sequence dependent transformation of the word embeddings of an AI model.<n>We calculate a-postiori privacy estimates, based on mutual information, and verify the privacy and utility of instances of transformed embeddings.
arXiv Detail & Related papers (2025-06-11T06:56:12Z) - FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates [58.18162789618869]
Federated Learning (FL) is a widely used framework for training models in a decentralized manner.<n>We propose the FedRand framework, which avoids disclosing the full set of client parameters.<n>We empirically validate that FedRand improves robustness against MIAs compared to relevant baselines.
arXiv Detail & Related papers (2025-03-10T11:55:50Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - FedSpaLLM: Federated Pruning of Large Language Models [8.45879077052023]
Large Language Models (LLMs) achieve state-of-the-art performance but are challenging to deploy due to their high computational and storage demands.<n>We propose FedSpaLLM, the first federated learning framework designed specifically for pruning LLMs.
arXiv Detail & Related papers (2024-10-18T20:33:12Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data.
Many domain-specific data are privately distributed across multiple owners.
We introduce FedBiOT, a resource-efficient LLM fine-tuning approach to federated learning.
arXiv Detail & Related papers (2024-06-25T16:45:47Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions.
FedKSeed employs zeroth-order optimization with a finite set of random seeds.
It significantly reduces transmission requirements between the server and clients to just a few random seeds.
arXiv Detail & Related papers (2023-12-11T13:03:21Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.