Minimax Rates of Estimation for Optimal Transport Map between Infinite-Dimensional Spaces
- URL: http://arxiv.org/abs/2505.13570v2
- Date: Tue, 27 May 2025 11:11:13 GMT
- Title: Minimax Rates of Estimation for Optimal Transport Map between Infinite-Dimensional Spaces
- Authors: Donlapark Ponnoprat, Masaaki Imaizumi,
- Abstract summary: We investigate the estimation of an optimal transport map between probability measures on an infinite-dimensional space and reveal its minimax optimal rate.<n>Estimating the optimal transport map from samples finds several applications, such as simulating dynamics between probability measures and functional data analysis.
- Score: 6.9060054915724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the estimation of an optimal transport map between probability measures on an infinite-dimensional space and reveal its minimax optimal rate. Optimal transport theory defines distances within a space of probability measures, utilizing an optimal transport map as its key component. Estimating the optimal transport map from samples finds several applications, such as simulating dynamics between probability measures and functional data analysis. However, some transport maps on infinite-dimensional spaces require exponential-order data for estimation, which undermines their applicability. In this paper, we investigate the estimation of an optimal transport map between infinite-dimensional spaces, focusing on optimal transport maps characterized by the notion of $\gamma$-smoothness. Consequently, we show that the order of the minimax risk is polynomial rate in the sample size even in the infinite-dimensional setup. We also develop an estimator whose estimation error matches the minimax optimal rate. With these results, we obtain a class of reasonably estimable optimal transport maps on infinite-dimensional spaces and a method for their estimation. Our experiments validate the theory and practical utility of our approach with application to functional data analysis.
Related papers
- Conditional Optimal Transport on Function Spaces [53.9025059364831]
We develop a theory of constrained optimal transport problems that describe block-triangular Monge maps.
This generalizes the theory of optimal triangular transport to separable infinite-dimensional function spaces with general cost functions.
We present numerical experiments that demonstrate the computational applicability of our theoretical results for amortized and likelihood-free inference of functional parameters.
arXiv Detail & Related papers (2023-11-09T18:44:42Z) - Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs [49.1574468325115]
We consider the problem of recovering the $Wimat$-optimal transport map T between absolutely continuous measures $mu,nuinmathcalP(mathbbRn)$ as the flow of a linear-control neural ODE.
arXiv Detail & Related papers (2023-11-02T17:17:03Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Minimax estimation of discontinuous optimal transport maps: The
semi-discrete case [14.333765302506658]
We consider the problem of estimating the optimal transport map between two probability distributions, $P$ and $Q$ in $mathbb Rd$.
We show that an estimator based on entropic optimal transport converges at the minimax-optimal rate $n-1/2$, independent of dimension.
arXiv Detail & Related papers (2023-01-26T18:41:38Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOT is an information-theoretic extension of optimal transport.
It maximizes the mutual information between domains while minimizing geometric distances.
This formulation yields a new projection method that is robust to outliers and generalizes to unseen samples.
arXiv Detail & Related papers (2022-10-06T18:55:41Z) - GAN Estimation of Lipschitz Optimal Transport Maps [0.0]
This paper introduces the first statistically consistent estimator of the optimal transport map between two probability distributions, based on neural networks.
We demonstrate that, under regularity assumptions, the obtained generator converges uniformly to the optimal transport map as the sample size increases to infinity.
In contrast to previous work tackling either statistical guarantees or practicality, we provide an expressive and feasible estimator which paves way for optimal transport applications.
arXiv Detail & Related papers (2022-02-16T10:15:56Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Entropic estimation of optimal transport maps [15.685006881635209]
We develop a method for estimating the optimal map between two distributions over $mathbbRd$ with rigorous finite-sample guarantees.
We show that our estimator is easy to compute using Sinkhorn's algorithm.
arXiv Detail & Related papers (2021-09-24T14:57:26Z) - Plugin Estimation of Smooth Optimal Transport Maps [25.23336043463205]
We show that a number of natural estimators for the optimal transport map between two distributions are minimax optimal.
Our work provides new bounds on the risk of corresponding plugin estimators for the quadratic Wasserstein distance.
arXiv Detail & Related papers (2021-07-26T17:58:48Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.