Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2505.13709v1
- Date: Mon, 19 May 2025 20:14:33 GMT
- Title: Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning
- Authors: Jiayu Chen, Aravind Venugopal, Jeff Schneider,
- Abstract summary: offline model-based RL (MBRL) explicitly learns a world model from a static dataset.<n>We propose a framework that dynamically adapts the world model alongside the policy.<n>We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three Tokamak Control tasks, demonstrating its state-of-the-art performance.
- Score: 6.189693079685375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.
Related papers
- Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning [5.663006149337036]
offline model-based RL (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators.<n>There could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging.<n>We propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty.
arXiv Detail & Related papers (2024-10-15T03:36:43Z) - Learning from Random Demonstrations: Offline Reinforcement Learning with Importance-Sampled Diffusion Models [19.05224410249602]
We propose a novel approach for offline reinforcement learning with closed-loop policy evaluation and world-model adaptation.
We analyzed the performance of the proposed method and provided an upper bound on the return gap between our method and the real environment under an optimal policy.
arXiv Detail & Related papers (2024-05-30T09:34:31Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Model Generation with Provable Coverability for Offline Reinforcement
Learning [14.333861814143718]
offline optimization with dynamics-aware policy provides a new perspective for policy learning and out-of-distribution generalization.
But due to the limitation under the offline setting, the learned model could not mimic real dynamics well enough to support reliable out-of-distribution exploration.
We propose an algorithm to generate models optimizing their coverage for the real dynamics.
arXiv Detail & Related papers (2022-06-01T08:34:09Z) - Model-Advantage Optimization for Model-Based Reinforcement Learning [41.13567626667456]
Model-based Reinforcement Learning (MBRL) algorithms have been traditionally designed with the goal of learning accurate dynamics of the environment.
Value-aware model learning, an alternative model-learning paradigm to maximum likelihood, proposes to inform model-learning through the value function of the learnt policy.
We propose a novel value-aware objective that is an upper bound on the absolute performance difference of a policy across two models.
arXiv Detail & Related papers (2021-06-26T20:01:28Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.