Model Generation with Provable Coverability for Offline Reinforcement
Learning
- URL: http://arxiv.org/abs/2206.00316v2
- Date: Thu, 2 Jun 2022 05:48:22 GMT
- Title: Model Generation with Provable Coverability for Offline Reinforcement
Learning
- Authors: Chengxing Jia and Hao Yin and Chenxiao Gao and Tian Xu and Lei Yuan
and Zongzhang Zhang and Yang Yu
- Abstract summary: offline optimization with dynamics-aware policy provides a new perspective for policy learning and out-of-distribution generalization.
But due to the limitation under the offline setting, the learned model could not mimic real dynamics well enough to support reliable out-of-distribution exploration.
We propose an algorithm to generate models optimizing their coverage for the real dynamics.
- Score: 14.333861814143718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based offline optimization with dynamics-aware policy provides a new
perspective for policy learning and out-of-distribution generalization, where
the learned policy could adapt to different dynamics enumerated at the training
stage. But due to the limitation under the offline setting, the learned model
could not mimic real dynamics well enough to support reliable
out-of-distribution exploration, which still hinders policy to generalize well.
To narrow the gap, previous works roughly ensemble randomly initialized models
to better approximate the real dynamics. However, such practice is costly and
inefficient, and provides no guarantee on how well the real dynamics could be
approximated by the learned models, which we name coverability in this paper.
We actively address this issue by generating models with provable ability to
cover real dynamics in an efficient and controllable way. To that end, we
design a distance metric for dynamic models based on the occupancy of policies
under the dynamics, and propose an algorithm to generate models optimizing
their coverage for the real dynamics. We give a theoretical analysis on the
model generation process and proves that our algorithm could provide enhanced
coverability. As a downstream task, we train a dynamics-aware policy with minor
or no conservative penalty, and experiments demonstrate that our algorithm
outperforms prior offline methods on existing offline RL benchmarks. We also
discover that policies learned by our method have better zero-shot transfer
performance, implying their better generalization.
Related papers
- Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Model-Based Reinforcement Learning with SINDy [0.0]
We propose a novel method for discovering the governing non-linear dynamics of physical systems in reinforcement learning (RL)
We establish that this method is capable of discovering the underlying dynamics using significantly fewer trajectories than state of the art model learning algorithms.
arXiv Detail & Related papers (2022-08-30T19:03:48Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.