Beyond Semantics: The Unreasonable Effectiveness of Reasonless Intermediate Tokens
- URL: http://arxiv.org/abs/2505.13775v2
- Date: Tue, 27 May 2025 07:54:11 GMT
- Title: Beyond Semantics: The Unreasonable Effectiveness of Reasonless Intermediate Tokens
- Authors: Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, Subbarao Kambhampati,
- Abstract summary: We investigate how the semantics of intermediate tokens-often anthropomorphized as "thoughts" or reasoning traces-actually influence model performance.<n>We show that despite significant improvements on the solution-only baseline, models trained on entirely correct traces still produce invalid reasoning traces when arriving at correct solutions.
- Score: 14.78605805191225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent impressive results from large reasoning models have been interpreted as a triumph of Chain of Thought (CoT), and especially of the process of training on CoTs sampled from base LLMs in order to help find new reasoning patterns. In this paper, we critically examine that interpretation by investigating how the semantics of intermediate tokens-often anthropomorphized as "thoughts" or reasoning traces and which are claimed to display behaviors like backtracking, self-verification etc.-actually influence model performance. We train transformer models on formally verifiable reasoning traces and solutions, constraining both intermediate steps and final outputs to align with those of a formal solver (in our case, A* search). By constructing a formal interpreter of the semantics of our problems and intended algorithm, we systematically evaluate not only solution accuracy but also the correctness of intermediate traces, thus allowing us to evaluate whether the latter causally influences the former. We notice that, despite significant improvements on the solution-only baseline, models trained on entirely correct traces still produce invalid reasoning traces when arriving at correct solutions. To further show that trace accuracy is only loosely connected to solution accuracy, we then train models on noisy, corrupted traces which have no relation to the specific problem each is paired with, and find that not only does performance remain largely consistent with models trained on correct data, but in some cases can improve upon it and generalize more robustly on out-of-distribution tasks. These results challenge the assumption that intermediate tokens or "Chains of Thought" induce predictable reasoning behaviors and caution against anthropomorphizing such outputs or over-interpreting them (despite their mostly correct forms) as evidence of human-like or algorithmic behaviors in language models.
Related papers
- On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study [4.319482898846564]
We study two key factors for improving reasoning in large language models.<n>We train decoder-only transformers on question-trace-answer triples using a custom tokenizer.<n>With the same training-token budget, models trained on inefficient traces generalize better to unseen graphs.
arXiv Detail & Related papers (2025-07-07T18:00:06Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments [5.5855749614100825]
This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction.<n>We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem.<n>Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
arXiv Detail & Related papers (2025-05-25T23:17:47Z) - Interpretable Traces, Unexpected Outcomes: Investigating the Disconnect in Trace-Based Knowledge Distillation [14.489157453882767]
This work aims to address the challenge of evaluating reasoning traces and their correlation with the final performance.<n>We employ a KD method leveraging rule-based problem decomposition to generate interpretable traces.<n>Specifically, we demonstrate this approach on Open Book QA, decomposing the problem into a Classification step and an Information Retrieval step.
arXiv Detail & Related papers (2025-05-20T00:49:19Z) - Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs [28.565225092457897]
Reinforcement learning can drive self-improvement in language models on verifiable tasks.<n>We find that Qwen-2.5-3B far exceeds Llama-3.2-3B under identical RL training for the game of Countdown.<n>Our study reveals that Qwen naturally exhibits these reasoning behaviors, whereas Llama initially lacks them.
arXiv Detail & Related papers (2025-03-03T08:46:22Z) - Examining False Positives under Inference Scaling for Mathematical Reasoning [59.19191774050967]
This paper systematically examines the prevalence of false positive solutions in mathematical problem solving for language models.<n>We explore how false positives influence the inference time scaling behavior of language models.
arXiv Detail & Related papers (2025-02-10T07:49:35Z) - Self-supervised Analogical Learning using Language Models [59.64260218737556]
We propose SAL, a self-supervised analogical learning framework.<n> SAL mimics the human analogy process and trains models to explicitly transfer high-quality symbolic solutions.<n>We show that the resulting models outperform base language models on a wide range of reasoning benchmarks.
arXiv Detail & Related papers (2025-02-03T02:31:26Z) - Token-Supervised Value Models for Enhancing Mathematical Problem-Solving Capabilities of Large Language Models [56.32800938317095]
Existing verifiers are sub-optimal for tree search techniques at test time.<n>We propose token-supervised value models (TVMs)<n>TVMs assign each token a probability that reflects the likelihood of reaching the correct final answer.
arXiv Detail & Related papers (2024-07-12T13:16:50Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - Mitigating Reversal Curse in Large Language Models via Semantic-aware Permutation Training [57.771940716189114]
We show that large language models (LLMs) suffer from the "reversal curse"
The root cause of the reversal curse lies in the different word order between the training and inference stage.
We propose Semantic-aware Permutation Training (SPT) to address this issue.
arXiv Detail & Related papers (2024-03-01T18:55:20Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.