Rethink the Role of Deep Learning towards Large-scale Quantum Systems
- URL: http://arxiv.org/abs/2505.13852v1
- Date: Tue, 20 May 2025 02:55:52 GMT
- Title: Rethink the Role of Deep Learning towards Large-scale Quantum Systems
- Authors: Yusheng Zhao, Chi Zhang, Yuxuan Du,
- Abstract summary: We benchmark deep learning models against traditional machine learning approaches across three families of Hamiltonian.<n>Our results reveal that ML models often achieve performance comparable to or even exceeding that of DL approaches across all tasks.<n>These findings challenge the necessity of current DL models in many quantum system learning scenarios.
- Score: 8.756632986784862
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterizing the ground state properties of quantum systems is fundamental to capturing their behavior but computationally challenging. Recent advances in AI have introduced novel approaches, with diverse machine learning (ML) and deep learning (DL) models proposed for this purpose. However, the necessity and specific role of DL models in these tasks remain unclear, as prior studies often employ varied or impractical quantum resources to construct datasets, resulting in unfair comparisons. To address this, we systematically benchmark DL models against traditional ML approaches across three families of Hamiltonian, scaling up to 127 qubits in three crucial ground-state learning tasks while enforcing equivalent quantum resource usage. Our results reveal that ML models often achieve performance comparable to or even exceeding that of DL approaches across all tasks. Furthermore, a randomization test demonstrates that measurement input features have minimal impact on DL models' prediction performance. These findings challenge the necessity of current DL models in many quantum system learning scenarios and provide valuable insights into their effective utilization.
Related papers
- Quantum Diffusion Models for Few-Shot Learning [13.13788757618812]
We propose three new frameworks employing quantum diffusion model (QDM) as a solution for the few-shot learning.
Experimental results demonstrate that our proposed algorithms significantly outperform existing methods.
arXiv Detail & Related papers (2024-11-06T19:25:06Z) - A Comprehensive Study on Quantization Techniques for Large Language Models [0.0]
Large Language Models (LLMs) have been extensively researched and used in both academia and industry.
LLMs present significant challenges for deployment on resource-constrained IoT devices and embedded systems.
Quantization, a technique that reduces the precision of model values to a smaller set of discrete values, offers a promising solution.
arXiv Detail & Related papers (2024-10-30T04:55:26Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [36.92660589442233]
Multi-task learning (MTL) aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks.<n>Continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge.<n>We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup.<n>Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods.
arXiv Detail & Related papers (2024-08-29T23:22:40Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - Machine Learning vs Deep Learning: The Generalization Problem [0.0]
This study investigates the comparative abilities of traditional machine learning (ML) models and deep learning (DL) algorithms in terms of extrapolation.
We present an empirical analysis where both ML and DL models are trained on an exponentially growing function and then tested on values outside the training domain.
Our findings suggest that deep learning models possess inherent capabilities to generalize beyond the training scope.
arXiv Detail & Related papers (2024-03-03T21:42:55Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.