Learning to Insert for Constructive Neural Vehicle Routing Solver
- URL: http://arxiv.org/abs/2505.13904v2
- Date: Mon, 23 Jun 2025 16:00:03 GMT
- Title: Learning to Insert for Constructive Neural Vehicle Routing Solver
- Authors: Fu Luo, Xi Lin, Mengyuan Zhong, Fei Liu, Zhenkun Wang, Jianyong Sun, Qingfu Zhang,
- Abstract summary: We propose Learning to Construct with Insertion-based Paradigm (L2C-Insert) as a learning-based method for constructive NCO.<n>Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution.<n>Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance.
- Score: 13.61325290256131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
Related papers
- Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning [3.0711362702464684]
We introduce a novel learning framework driven by Large Language Models (LLMs)<n>Unlike prevailing techniques that necessitate joint training with the neural network, our approach operates exclusively during the inference phase.<n>Our method enables a backbone model (trained on 100-node instances) to achieve superior performance on large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) of up to 100K nodes from diverse distributions.
arXiv Detail & Related papers (2025-06-03T03:15:22Z) - Towards Constraint-Based Adaptive Hypergraph Learning for Solving Vehicle Routing: An End-to-End Solution [4.965709007367529]
Vehicle routing problems are characterized by vast solution spaces and intricate constraints.<n>This study introduces a novel end-to-end framework that combines constraint-oriented hypergraphs with reinforcement learning.
arXiv Detail & Related papers (2025-03-13T14:42:44Z) - CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention [21.554370739508528]
This paper introduces a Constraint-Aware Dual-Attention Model (CaDA) for vehicle routing problems.<n>CaDA incorporates a constraint prompt that efficiently represents different problem variants.<n>It features a dual-attention mechanism with a global branch for capturing broader graph-wide information.
arXiv Detail & Related papers (2024-11-30T04:11:36Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Routing Solver [15.842155380912002]
We propose a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural routing solvers.<n>We show that our proposed method is capable of obtaining promising results with a very fast inference time.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Self-Improved Learning for Scalable Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Self-Improved Learning (SIL) method for better scalability of neural optimization.
We develop an efficient self-improved mechanism that enables direct model training on large-scale problem instances without any labeled data.
In addition, we design a linear attention complexity mechanism for the computation model to efficiently handle large-scale problem instances with low overhead.
arXiv Detail & Related papers (2024-03-28T16:46:53Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.