XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data
- URL: http://arxiv.org/abs/2505.13906v1
- Date: Tue, 20 May 2025 04:17:28 GMT
- Title: XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data
- Authors: Soyabul Islam Lincoln, Mirza Mohd Shahriar Maswood,
- Abstract summary: This paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention.<n>The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.<n>In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.<n>Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection [0.0]
We propose a novel Granular Feature Integration method to combine information extraction at different scales along with an efficient information flow.<n>We also propose a Bi-Focal Perspective mechanism to highlight the subtle neurofibrillary tangles and amyloid plaques in the MRI scans.<n>Our model achieved an F1-Score of 99.31%, precision of 99.24%, and recall of 99.51%.
arXiv Detail & Related papers (2024-07-15T17:22:16Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - SNeurodCNN: Structure-focused Neurodegeneration Convolutional Neural Network for Modelling and Classification of Alzheimer's Disease [0.0]
Alzheimer's disease (AD), the predominant form of dementia, is a growing global challenge.
Current clinical diagnoses rely on radiologist expert interpretation, which is prone to human error.
This paper proposes a deep learning framework that includes a novel structure-focused neurodegeneration CNN architecture named SNeurodCNN.
arXiv Detail & Related papers (2024-01-08T14:33:57Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - 3D Structural Analysis of the Optic Nerve Head to Robustly Discriminate
Between Papilledema and Optic Disc Drusen [44.754910718620295]
We developed a deep learning algorithm to identify major tissue structures of the optic nerve head (ONH) in 3D optical coherence tomography ( OCT) scans.
A classification algorithm was designed using 150 OCT volumes to perform 3-class classifications (1: ODD, 2: papilledema, 3: healthy) strictly from their drusen and prelamina swelling scores.
Our AI approach accurately discriminated ODD from papilledema, using a single OCT scan.
arXiv Detail & Related papers (2021-12-18T17:05:53Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.