論文の概要: DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery
- arxiv url: http://arxiv.org/abs/2505.13940v2
- Date: Mon, 28 Jul 2025 08:10:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 22:32:02.375144
- Title: DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery
- Title(参考訳): DrugPilot: LLMによる薬物発見のためのパラメータ化推論剤
- Authors: Kun Li, Zhennan Wu, Shoupeng Wang, Jia Wu, Shirui Pan, Wenbin Hu,
- Abstract要約: 大規模言語モデル(LLM)と自律エージェントの統合は、自動推論とタスク実行を通じて科学的発見を促進する大きな可能性を秘めている。
本稿では,薬物発見におけるエンドツーエンド科学のために設計されたパラメータ化推論アーキテクチャを備えたLSMベースのエージェントシステムであるDrarmPilotを紹介する。
DrugPilot は ReAct や LoT のような最先端のエージェントよりも優れており、タスク完了率は98.0%、93.5%、64.0%である。
- 参考スコア(独自算出の注目度): 54.79763887844838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) integrated with autonomous agents hold significant potential for advancing scientific discovery through automated reasoning and task execution. However, applying LLM agents to drug discovery is still constrained by challenges such as large-scale multimodal data processing, limited task automation, and poor support for domain-specific tools. To overcome these limitations, we introduce DrugPilot, a LLM-based agent system with a parameterized reasoning architecture designed for end-to-end scientific workflows in drug discovery. DrugPilot enables multi-stage research processes by integrating structured tool use with a novel parameterized memory pool. The memory pool converts heterogeneous data from both public sources and user-defined inputs into standardized representations. This design supports efficient multi-turn dialogue, reduces information loss during data exchange, and enhances complex scientific decision-making. To support training and benchmarking, we construct a drug instruction dataset covering eight core drug discovery tasks. Under the Berkeley function-calling benchmark, DrugPilot significantly outperforms state-of-the-art agents such as ReAct and LoT, achieving task completion rates of 98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn scenarios, respectively. These results highlight DrugPilot's potential as a versatile agent framework for computational science domains requiring automated, interactive, and data-integrated reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)と自律エージェントの統合は、自動推論とタスク実行を通じて科学的発見を促進する大きな可能性を秘めている。
しかし、LLMエージェントを薬物発見に適用することは、大規模なマルチモーダルデータ処理、タスク自動化の制限、ドメイン固有のツールの貧弱なサポートといった課題によって、依然として制限されている。
これらの制約を克服するために,薬物発見におけるエンドツーエンドの科学的ワークフローのために設計されたパラメータ化推論アーキテクチャを備えたLSMベースのエージェントシステムであるDragonPilotを導入する。
DrugPilotは、構造化ツールの使用と新しいパラメータ化メモリプールを統合することで、多段階の研究プロセスを可能にする。
メモリプールは、パブリックソースとユーザ定義インプットの両方からの異種データを標準化された表現に変換する。
この設計は、効率的なマルチターン対話をサポートし、データ交換時の情報損失を低減し、複雑な科学的意思決定を促進する。
トレーニングとベンチマークを支援するために,8つの中核的な薬物発見タスクをカバーする薬物指導データセットを構築した。
バークレーの関数呼び出しベンチマークでは、DrarmPilotはReActやLoTのような最先端のエージェントを著しく上回り、シンプル、マルチツール、マルチターンのシナリオでそれぞれ98.0%、93.5%、64.0%のタスク完了率を達成した。
これらの結果は、自動的、対話的、およびデータ統合推論を必要とする計算科学領域のための汎用エージェントフレームワークとしてのDrarmPilotの可能性を強調している。
関連論文リスト
- DrugMCTS: a drug repurposing framework combining multi-agent, RAG and Monte Carlo Tree Search [10.123162419093973]
DrugMCTSは、RAG、マルチエージェントコラボレーション、薬物再配置のためのMonte Carlo Tree Searchを統合する新しいフレームワークである。
分子情報やタンパク質情報を検索・解析する5つの専門的なエージェントを駆使し、構造的かつ反復的な推論を可能にする。
本結果は,構造化推論,エージェントによる協調,フィードバックによる探索機構の重要性を強調した。
論文 参考訳(メタデータ) (2025-07-10T04:39:55Z) - ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
ケミカルエグゼキュータとして完全微調整された大規模言語モデル(LLM)であるChemActorを紹介し,非構造化実験手順と構造化動作シーケンスを変換する。
このフレームワークは、分散分散に基づくデータ選択モジュールと汎用LLMを統合し、単一の分子入力からマシン実行可能なアクションを生成する。
反応記述(R2D)と記述記述処理(D2A)のタスクの実験により、ChemActorは最先端のパフォーマンスを達成し、ベースラインモデルよりも10%高い性能を示した。
論文 参考訳(メタデータ) (2025-06-30T05:11:19Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - LLM Agent Swarm for Hypothesis-Driven Drug Discovery [2.7036595757881323]
ファーマシュワーム(PharmaSwarm)は、新規な薬物標的および鉛化合物の仮説を提唱し、検証し、洗練するために、特殊な「エージェント」を編成する統合マルチエージェントフレームワークである。
PharmaSwarmはAIの副操縦士として機能することで、翻訳研究を加速し、従来のパイプラインよりも効率的に高信頼の仮説を提供することができる。
論文 参考訳(メタデータ) (2025-04-24T22:27:50Z) - PharmAgents: Building a Virtual Pharma with Large Language Model Agents [19.589707628042422]
マルチエージェントコラボレーションによる仮想医薬エコシステムであるPharmAgentsを紹介する。
このシステムは、特殊な機械学習モデルと計算ツールを備えた、説明可能なLCM駆動エージェントを統合している。
潜在的な治療標的を特定し、有望な鉛化合物を発見し、結合親和性と重要な分子特性を高め、毒性と合成可能性のシリコ分析を行う。
論文 参考訳(メタデータ) (2025-03-28T06:02:53Z) - DatawiseAgent: A Notebook-Centric LLM Agent Framework for Automated Data Science [4.1431677219677185]
DatawiseAgentはノートブック中心のエージェントフレームワークで、ユーザ、エージェント、計算環境間のインタラクションを統合する。
DSFライクな計画、インクリメンタルな実行、自己老化、ポストフィルタの4つのステージを編成する。
一貫して、複数のモデル設定で最先端のメソッドを上回るか、マッチする。
論文 参考訳(メタデータ) (2025-03-10T08:32:33Z) - RAG-Enhanced Collaborative LLM Agents for Drug Discovery [28.025359322895905]
CLADDは、薬物発見タスクに適した、検索増強世代(RAG)内蔵のエージェントシステムである。
汎用LLMやドメイン固有のLLM、そして従来のディープラーニングのアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2025-02-22T00:12:52Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration [24.65716292347949]
DrugAgentは、薬物発見タスクのための機械学習(ML)プログラミングを自動化するマルチエージェントフレームワークである。
以上の結果から,DragonAgentは最上位のベースラインを一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-24T03:06:59Z) - DrugAgent: Multi-Agent Large Language Model-Based Reasoning for Drug-Target Interaction Prediction [8.98329812378801]
DrugAgentは、薬物と薬物の相互作用を予測するためのマルチエージェントシステムである。
複数の専門的な視点と透明な推論を組み合わせる。
我々のアプローチは、予測毎に詳細な人間解釈可能な推論を提供する。
論文 参考訳(メタデータ) (2024-08-23T21:24:59Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z) - DrugAssist: A Large Language Model for Molecule Optimization [29.95488215594247]
DrugAssistは、人間と機械の対話を通じて最適化を行う対話型分子最適化モデルである。
DrugAssistは、単一および複数プロパティの最適化において、主要な結果を得た。
分子最適化タスクの微調整言語モデルのための,MomoOpt-Instructionsと呼ばれる大規模命令ベースデータセットを公開している。
論文 参考訳(メタデータ) (2023-12-28T10:46:56Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
現実世界の医薬品のデータセットは、しばしば高度に不均衡な分布を示す。
ImDrugはオープンソースのPythonライブラリを備えたベンチマークで、4つの不均衡設定、11のAI対応データセット、54の学習タスク、16のベースラインアルゴリズムで構成されています。
ドラッグ発見パイプラインの幅広い範囲にまたがる問題やソリューションに対して、アクセス可能でカスタマイズ可能なテストベッドを提供する。
論文 参考訳(メタデータ) (2022-09-16T13:35:57Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。