DRP: Distilled Reasoning Pruning with Skill-aware Step Decomposition for Efficient Large Reasoning Models
- URL: http://arxiv.org/abs/2505.13975v2
- Date: Tue, 27 May 2025 03:40:19 GMT
- Title: DRP: Distilled Reasoning Pruning with Skill-aware Step Decomposition for Efficient Large Reasoning Models
- Authors: Yuxuan Jiang, Dawei Li, Frank Ferraro,
- Abstract summary: We propose Distilled Reasoning Pruning ( traces), a hybrid framework that combines inference-time pruning with tuning-based distillation.<n>We find that models trained with traces achieve substantial improvements in token efficiency without sacrificing accuracy.<n>Further analysis shows that aligning the reasoning structure of training CoTs with the student's reasoning capacity is critical for effective knowledge transfer and performance gains.
- Score: 2.9828816765661363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Reasoning Models (LRMs) have demonstrated success in complex reasoning tasks through long chain-of-thought (CoT) reasoning, their inference often involves excessively verbose reasoning traces, resulting in substantial inefficiency. To address this, we propose Distilled Reasoning Pruning (DRP), a hybrid framework that combines inference-time pruning with tuning-based distillation, two widely used strategies for efficient reasoning. DRP uses a teacher model to perform skill-aware step decomposition and content pruning, and then distills the pruned reasoning paths into a student model, enabling it to reason both efficiently and accurately. Across several challenging mathematical reasoning datasets, we find that models trained with DRP achieve substantial improvements in token efficiency without sacrificing accuracy. Specifically, DRP reduces average token usage on GSM8K from 917 to 328 while improving accuracy from 91.7% to 94.1%, and achieves a 43% token reduction on AIME with no performance drop. Further analysis shows that aligning the reasoning structure of training CoTs with the student's reasoning capacity is critical for effective knowledge transfer and performance gains.
Related papers
- ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning [29.64638547097158]
SelfBudgeter is a self-adaptive controllable reasoning strategy for efficient reasoning.<n>We introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length.<n> Experimental results demonstrate that SelfBudgeter can rationally allocate budgets according to problem complexity.
arXiv Detail & Related papers (2025-05-16T14:08:04Z) - TwT: Thinking without Tokens by Habitual Reasoning Distillation with Multi-Teachers' Guidance [42.8895384120507]
We propose TwT, a method that reduces inference-time costs through habitual reasoning distillation with multi-teachers' guidance.<n>Our approach internalizes explicit reasoning into the model's habitual behavior through a Teacher-Guided compression strategy.<n> Experimental results demonstrate that TwT effectively reduces inference costs while preserving superior performance.
arXiv Detail & Related papers (2025-03-31T15:16:31Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - The Surprising Effectiveness of Test-Time Training for Few-Shot Learning [59.309477460893916]
Language models (LMs) have shown impressive performance on tasks within their training distribution, but often struggle with structurally novel tasks.<n>We investigate the effectiveness of test-time training (TTT) as a mechanism for improving LMs' reasoning and few-shot learning capabilities.<n>Our findings highlight the limitations of in-context learning for novel tasks and demonstrate the potential of test-time training to enhance language model adaptability.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
We propose the Deductive and InDuctive(DID) method to enhance Large Language Models (LLMs) reasoning.<n>DID implements a dual-metric complexity evaluation system that combines Littlestone dimension and information entropy.<n>Our results demonstrate significant improvements in reasoning quality and solution accuracy.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.