Disentangled Multi-span Evolutionary Network against Temporal Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2505.14020v2
- Date: Thu, 29 May 2025 07:45:13 GMT
- Title: Disentangled Multi-span Evolutionary Network against Temporal Knowledge Graph Reasoning
- Authors: Hao Dong, Ziyue Qiao, Zhiyuan Ning, Qi Hao, Yi Du, Pengyang Wang, Yuanchun Zhou,
- Abstract summary: Temporal Knowledge Graphs (TKGs) incorporate the temporal feature to express the transience of knowledge by describing when facts occur.<n>We propose a novel Disentangled Multi-span Evolutionary Network (DiMNet) for TKG reasoning.
- Score: 20.195713621340403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graphs (TKGs), as an extension of static Knowledge Graphs (KGs), incorporate the temporal feature to express the transience of knowledge by describing when facts occur. TKG extrapolation aims to infer possible future facts based on known history, which has garnered significant attention in recent years. Some existing methods treat TKG as a sequence of independent subgraphs to model temporal evolution patterns, demonstrating impressive reasoning performance. However, they still have limitations: 1) In modeling subgraph semantic evolution, they usually neglect the internal structural interactions between subgraphs, which are actually crucial for encoding TKGs. 2) They overlook the potential smooth features that do not lead to semantic changes, which should be distinguished from the semantic evolution process. Therefore, we propose a novel Disentangled Multi-span Evolutionary Network (DiMNet) for TKG reasoning. Specifically, we design a multi-span evolution strategy that captures local neighbor features while perceiving historical neighbor semantic information, thus enabling internal interactions between subgraphs during the evolution process. To maximize the capture of semantic change patterns, we design a disentangle component that adaptively separates nodes' active and stable features, used to dynamically control the influence of historical semantics on future evolution. Extensive experiments conducted on four real-world TKG datasets show that DiMNet demonstrates substantial performance in TKG reasoning, and outperforms the state-of-the-art up to 22.7% in MRR.
Related papers
- Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs [9.669168390205595]
We propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN)<n>HERLN learns structural information and evolutional patterns of a TKG simultaneously.<n> Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.
arXiv Detail & Related papers (2024-12-28T06:47:51Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
This paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS)
LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively.
It also integrates timestamp semantics into graph attention calculations and time-aware decoders.
arXiv Detail & Related papers (2023-12-04T08:23:09Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Complex Evolutional Pattern Learning for Temporal Knowledge Graph
Reasoning [60.94357727688448]
TKG reasoning aims to predict potential facts in the future given the historical KG sequences.
The evolutional patterns are complex in two aspects, length-diversity and time-variability.
We propose a new model, called Complex Evolutional Network (CEN), which uses a length-aware Convolutional Neural Network (CNN) to handle evolutional patterns of different lengths.
arXiv Detail & Related papers (2022-03-15T11:02:55Z) - EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning
over Temporal Knowledge Graphs [25.408246523764085]
Reasoning over temporal knowledge graphs (TKGs) is crucial for many applications to provide intelligent services.
We present a problem formulation that unifies the two major problems that need to be addressed for an effective reasoning over TKGs, namely, modeling the event time and the evolving network structure.
Our proposed method EvoKG jointly models both tasks in an effective framework, which captures the ever-changing structural and temporal dynamics in TKGs.
arXiv Detail & Related papers (2022-02-15T18:49:53Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.