Learning High-dimensional Ionic Model Dynamics Using Fourier Neural Operators
- URL: http://arxiv.org/abs/2505.14039v1
- Date: Tue, 20 May 2025 07:37:03 GMT
- Title: Learning High-dimensional Ionic Model Dynamics Using Fourier Neural Operators
- Authors: Luca Pellegrini, Massimiliano Ghiotto, Edoardo Centofanti, Luca Franco Pavarino,
- Abstract summary: We investigate whether Fourier Neural Operators can learn the evolution of all the state variables within ionic systems in higher dimensions.<n>We demonstrate the effectiveness of this approach by accurately learning the dynamics of three well-established ionic models with increasing dimensionality.<n>Both constrained and unconstrained architectures achieve comparable results in terms of accuracy across all the models considered.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ionic models, described by systems of stiff ordinary differential equations, are fundamental tools for simulating the complex dynamics of excitable cells in both Computational Neuroscience and Cardiology. Approximating these models using Artificial Neural Networks poses significant challenges due to their inherent stiffness, multiscale nonlinearities, and the wide range of dynamical behaviors they exhibit, including multiple equilibrium points, limit cycles, and intricate interactions. While in previous studies the dynamics of the transmembrane potential has been predicted in low dimensionality settings, in the present study we extend these results by investigating whether Fourier Neural Operators can effectively learn the evolution of all the state variables within these dynamical systems in higher dimensions. We demonstrate the effectiveness of this approach by accurately learning the dynamics of three well-established ionic models with increasing dimensionality: the two-variable FitzHugh-Nagumo model, the four-variable Hodgkin-Huxley model, and the forty-one-variable O'Hara-Rudy model. To ensure the selection of near-optimal configurations for the Fourier Neural Operator, we conducted automatic hyperparameter tuning under two scenarios: an unconstrained setting, where the number of trainable parameters is not limited, and a constrained case with a fixed number of trainable parameters. Both constrained and unconstrained architectures achieve comparable results in terms of accuracy across all the models considered. However, the unconstrained architecture required approximately half the number of training epochs to achieve similar error levels, as evidenced by the loss function values recorded during training. These results underline the capabilities of Fourier Neural Operators to accurately capture complex multiscale dynamics, even in high-dimensional dynamical systems.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - High-order expansion of Neural Ordinary Differential Equations flows [4.4569182855550755]
We introduce Event Transitions, a framework based on high-order differentials that provides a rigorous mathematical description of neural ODE dynamics on event gradient.<n>Our findings contribute to a deeper theoretical foundation for event-triggered neural differential equations and provide a mathematical construct for explaining complex system dynamics.
arXiv Detail & Related papers (2025-04-02T08:57:34Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.<n>By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
We develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS)<n>Our method builds on previous work modeling the latent state evolution via a differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs)<n>Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics.
arXiv Detail & Related papers (2024-07-19T15:32:15Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
This work demonstrates that injection of partially known information at an intermediate layer in a deep neural network can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training.
The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory.
arXiv Detail & Related papers (2022-05-13T19:06:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.