Generalizable Multispectral Land Cover Classification via Frequency-Aware Mixture of Low-Rank Token Experts
- URL: http://arxiv.org/abs/2505.14088v1
- Date: Tue, 20 May 2025 08:52:28 GMT
- Title: Generalizable Multispectral Land Cover Classification via Frequency-Aware Mixture of Low-Rank Token Experts
- Authors: Xi Chen, Shen Yan, Juelin Zhu, Chen Chen, Yu Liu, Maojun Zhang,
- Abstract summary: We introduce Land-MoE, a novel approach for multispectral land cover classification (MLCC)<n>Land-MoE comprises two key modules: the mixture of low-rank token experts (MoLTE) and frequency-aware filters (FAF)
- Score: 22.75047167955269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Land-MoE, a novel approach for multispectral land cover classification (MLCC). Spectral shift, which emerges from disparities in sensors and geospatial conditions, poses a significant challenge in this domain. Existing methods predominantly rely on domain adaptation and generalization strategies, often utilizing small-scale models that exhibit limited performance. In contrast, Land-MoE addresses these issues by hierarchically inserting a Frequency-aware Mixture of Low-rank Token Experts, to fine-tune Vision Foundation Models (VFMs) in a parameter-efficient manner. Specifically, Land-MoE comprises two key modules: the mixture of low-rank token experts (MoLTE) and frequency-aware filters (FAF). MoLTE leverages rank-differentiated tokens to generate diverse feature adjustments for individual instances within multispectral images. By dynamically combining learnable low-rank token experts of varying ranks, it enhances the robustness against spectral shifts. Meanwhile, FAF conducts frequency-domain modulation on the refined features. This process enables the model to effectively capture frequency band information that is strongly correlated with semantic essence, while simultaneously suppressing frequency noise irrelevant to the task. Comprehensive experiments on MLCC tasks involving cross-sensor and cross-geospatial setups demonstrate that Land-MoE outperforms existing methods by a large margin. Additionally, the proposed approach has also achieved state-of-the-art performance in domain generalization semantic segmentation tasks of RGB remote sensing images.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - FAD: Frequency Adaptation and Diversion for Cross-domain Few-shot Learning [35.40065954148091]
Cross-domain few-shot learning requires models to generalize from limited labeled samples under significant distribution shifts.<n>We introduce Frequency Adaptation and Diversion (FAD), a frequency-aware framework that explicitly models and modulates spectral components.<n>FAD consistently outperforms state-of-the-art methods on both seen and unseen domains.
arXiv Detail & Related papers (2025-05-13T08:48:06Z) - Dual-Domain Masked Image Modeling: A Self-Supervised Pretraining Strategy Using Spatial and Frequency Domain Masking for Hyperspectral Data [35.34526230299484]
We propose a self-supervised pretraining strategy for hyperspectral data that utilizes the large portion of unlabeled data.<n>Our method introduces a novel dual-domain masking mechanism that operates in both spatial and frequency domains.<n>We evaluate our approach on three publicly available HSI classification benchmarks and demonstrate that it achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-05-06T06:24:21Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design.
We propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method.
Our experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets.
arXiv Detail & Related papers (2024-09-03T07:58:47Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
arXiv Detail & Related papers (2024-08-05T08:35:59Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.<n>Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.<n>Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Masked Frequency Modeling for Self-Supervised Visual Pre-Training [102.89756957704138]
We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models.
MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum.
For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token.
arXiv Detail & Related papers (2022-06-15T17:58:30Z) - Few-shot One-class Domain Adaptation Based on Frequency for Iris
Presentation Attack Detection [33.41823375502942]
Iris presentation attack detection (PAD) has achieved remarkable success to ensure the reliability and security of iris recognition systems.
Most existing methods exploit discriminative features in the spatial domain and report outstanding performance under intra-dataset settings.
We propose a new domain adaptation setting called Few-shot One-class Domain Adaptation (FODA), where adaptation only relies on a limited number of target bonafide samples.
arXiv Detail & Related papers (2022-04-01T11:55:06Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.