DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
- URL: http://arxiv.org/abs/2505.14107v4
- Date: Thu, 29 May 2025 08:24:00 GMT
- Title: DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
- Authors: Yakun Zhu, Zhongzhen Huang, Linjie Mu, Yutong Huang, Wei Nie, Jiaji Liu, Shaoting Zhang, Pengfei Liu, Xiaofan Zhang,
- Abstract summary: DiagnosisArena is a benchmark designed to rigorously assess professional-level diagnostic competence.<n> DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties.<n>Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively.
- Score: 25.13622249539088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AI's diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering [7.092919468004549]
Large Language Models (LLMs) demonstrate significant capabilities in medical text understanding and generation.<n>This study aims to enhance LLMs' diagnostic accuracy and clinical reasoning ability.
arXiv Detail & Related papers (2025-08-01T03:05:43Z) - Sequential Diagnosis with Language Models [21.22416732642907]
We introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging cases into stepwise diagnostic encounters.<n>Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed.<n>We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians.
arXiv Detail & Related papers (2025-06-27T17:27:26Z) - An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [58.78045864541539]
We introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM)<n>DeepRare generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning.<n>The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases.
arXiv Detail & Related papers (2025-06-25T13:42:26Z) - MedCaseReasoning: Evaluating and learning diagnostic reasoning from clinical case reports [49.00805568780791]
We introduce MedCaseReasoning, the first open-access dataset for evaluating Large Language Models (LLMs) on their ability to align with clinician-authored diagnostic reasoning.<n>The dataset includes 14,489 diagnostic question-and-answer cases, each paired with detailed reasoning statements.<n>We evaluate state-of-the-art reasoning LLMs on MedCaseReasoning and find significant shortcomings in their diagnoses and reasoning.
arXiv Detail & Related papers (2025-05-16T22:34:36Z) - The Multi-Round Diagnostic RAG Framework for Emulating Clinical Reasoning [10.483453944197407]
We construct DiagnosGraph, a knowledge graph covering both modern medicine and Traditional Chinese Medicine.<n>To bridge the gap between colloquial patient narratives and academic medical knowledge, DiagnosGraph also introduces $1,908$ medical record.<n>Experiments conducted on four medical benchmarks, with evaluations by human physicians, demonstrate that MRD-RAG enhances the diagnostic performance of LLMs.
arXiv Detail & Related papers (2025-04-10T13:17:51Z) - MSDiagnosis: A Benchmark for Evaluating Large Language Models in Multi-Step Clinical Diagnosis [8.641421154025211]
We propose a Chinese clinical diagnostic benchmark, called MSDiagnosis.<n>This benchmark consists of 2,225 cases from 12 departments, covering tasks such as primary diagnosis, differential diagnosis, and final diagnosis.
arXiv Detail & Related papers (2024-08-19T14:31:57Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
We propose a framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases.
Our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility.
arXiv Detail & Related papers (2024-01-29T12:25:30Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - Multi-Task Training with In-Domain Language Models for Diagnostic
Reasoning [5.321587036724933]
We present a comparative analysis of in-domain versus out-of-domain language models as well as multi-task versus single task training.
We demonstrate that a multi-task, clinically trained language model outperforms its general domain counterpart by a large margin.
arXiv Detail & Related papers (2023-06-07T15:55:34Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.