Intra-class Patch Swap for Self-Distillation
- URL: http://arxiv.org/abs/2505.14124v1
- Date: Tue, 20 May 2025 09:30:19 GMT
- Title: Intra-class Patch Swap for Self-Distillation
- Authors: Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga,
- Abstract summary: We propose a teacher-free distillation framework based on a single student network.<n>Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation.<n>Our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches.
- Score: 3.282914142012984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation (KD) is a valuable technique for compressing large deep learning models into smaller, edge-suitable networks. However, conventional KD frameworks rely on pre-trained high-capacity teacher networks, which introduce significant challenges such as increased memory/storage requirements, additional training costs, and ambiguity in selecting an appropriate teacher for a given student model. Although a teacher-free distillation (self-distillation) has emerged as a promising alternative, many existing approaches still rely on architectural modifications or complex training procedures, which limit their generality and efficiency. To address these limitations, we propose a novel framework based on teacher-free distillation that operates using a single student network without any auxiliary components, architectural modifications, or additional learnable parameters. Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation. This augmentation simulates a teacher-student dynamic within a single model by generating pairs of intra-class samples with varying confidence levels, and then applying instance-to-instance distillation to align their predictive distributions. Our method is conceptually simple, model-agnostic, and easy to implement, requiring only a single augmentation function. Extensive experiments across image classification, semantic segmentation, and object detection show that our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches. These results suggest that the success of self-distillation could hinge on the design of the augmentation itself. Our codes are available at https://github.com/hchoi71/Intra-class-Patch-Swap.
Related papers
- Task-Based Flexible Feature Distillation for LLMs [5.1581069235093295]
We propose a novel task-based feature distillation method for large language models (LLMs)<n>Our approach identifies the most task-relevant hidden units in the teacher and directly distills their activations to the student.<n> Empirical results show consistent improvements over prior approaches across diverse tasks.
arXiv Detail & Related papers (2025-07-14T11:10:02Z) - Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Preserving Angles Improves Feature Distillation of Foundation Models [8.572967695281054]
Preserving similarities between a compress space network and a student image model is presented.<n>It is shown that variety of CossNet datasets, produces accurate with greater robustness on detection benchmarks.<n>This provides a competitive pathway for training on general detection benchmarks.
arXiv Detail & Related papers (2024-11-22T01:48:44Z) - TAS: Distilling Arbitrary Teacher and Student via a Hybrid Assistant [52.0297393822012]
We introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students.
Within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions.
Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, spatial KDs.
arXiv Detail & Related papers (2024-10-16T08:02:49Z) - Gap Preserving Distillation by Building Bidirectional Mappings with A Dynamic Teacher [43.678380057638016]
Gap Preserving Distillation (GPD) method trains an additional dynamic teacher model from scratch along with training the student to bridge this gap.
In experiments, GPD significantly outperforms existing distillation methods on top of both CNNs and transformers architectures.
GPD also generalizes well to the scenarios without a pre-trained teacher, including training from scratch and fine-tuning, yielding a large improvement of 1.80% and 0.89% on ResNet18.
arXiv Detail & Related papers (2024-10-05T12:29:51Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - One-for-All: Bridge the Gap Between Heterogeneous Architectures in
Knowledge Distillation [69.65734716679925]
Knowledge distillation has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme.
Most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family.
We propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures.
arXiv Detail & Related papers (2023-10-30T11:13:02Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Self-Distillation from the Last Mini-Batch for Consistency
Regularization [14.388479145440636]
We propose an efficient and reliable self-distillation framework, named Self-Distillation from Last Mini-Batch (DLB)
Our proposed mechanism guides the training stability and consistency, resulting in robustness to label noise.
Experimental results on three classification benchmarks illustrate that our approach can consistently outperform state-of-the-art self-distillation approaches.
arXiv Detail & Related papers (2022-03-30T09:50:24Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
This paper establishes a compact learning framework that embeds the classification and mask-refinement components into a unified deep model.
We propose a novel alternative self-dual teaching (ASDT) mechanism to encourage high-quality knowledge interaction.
arXiv Detail & Related papers (2021-12-17T11:56:56Z) - MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers [117.67424061746247]
We present a simple and effective approach to compress large Transformer based pre-trained models.
We propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student.
Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models.
arXiv Detail & Related papers (2020-02-25T15:21:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.