Task-Based Flexible Feature Distillation for LLMs
- URL: http://arxiv.org/abs/2507.10155v1
- Date: Mon, 14 Jul 2025 11:10:02 GMT
- Title: Task-Based Flexible Feature Distillation for LLMs
- Authors: Khouloud Saadi, Di Wang,
- Abstract summary: We propose a novel task-based feature distillation method for large language models (LLMs)<n>Our approach identifies the most task-relevant hidden units in the teacher and directly distills their activations to the student.<n> Empirical results show consistent improvements over prior approaches across diverse tasks.
- Score: 5.1581069235093295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Distillation (KD) in general and feature distillation in particular are promising techniques for reducing the high computational demand of large language models (LLMs). However, traditional feature KD methods typically assume that the teacher and the student share the same hidden size, limiting the flexibility of the student's architecture. A common solution to this problem involves training a linear projector to align their feature spaces, but this introduces additional parameters that must be learned from scratch and often degrades performance on downstream tasks, especially in generative settings. To address this issue, in this work, we propose a novel task-based feature distillation method that enables knowledge transfer between teacher and student models with different hidden layer dimensions, without introducing any new parameters. Leveraging the insight that only a subset of LLM components contribute significantly to a specific downstream task, our approach identifies the most task-relevant hidden units in the teacher and directly distills their activations to the student. Our method is flexible and easily integrates with other distillation frameworks. Empirical results show consistent improvements over prior approaches across diverse tasks, including classification, instruction-following, and summarization, achieving up to a 3\% performance gain over the linear projection baseline.
Related papers
- Intra-class Patch Swap for Self-Distillation [3.282914142012984]
We propose a teacher-free distillation framework based on a single student network.<n>Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation.<n>Our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches.
arXiv Detail & Related papers (2025-05-20T09:30:19Z) - Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Linear Projections of Teacher Embeddings for Few-Class Distillation [14.99228980898161]
Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model.
We introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP)
Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems.
arXiv Detail & Related papers (2024-09-30T16:07:34Z) - Multi-Granularity Semantic Revision for Large Language Model Distillation [66.03746866578274]
We propose a multi-granularity semantic revision method for LLM distillation.
At the sequence level, we propose a sequence correction and re-generation strategy.
At the token level, we design a distribution adaptive clipping Kullback-Leibler loss as the distillation objective function.
At the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent.
arXiv Detail & Related papers (2024-07-14T03:51:49Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs [47.35598271306371]
Large Language Models (LLMs) have exhibited impressive capabilities in various tasks, yet their vast parameter sizes restrict their applicability in resource-constrained settings.
Knowledge distillation (KD) offers a viable solution by transferring expertise from large teacher models to compact student models.
We present PLaD, a novel preference-based LLM distillation framework.
arXiv Detail & Related papers (2024-06-05T03:08:25Z) - Attention-guided Feature Distillation for Semantic Segmentation [8.344263189293578]
This paper showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention.<n>The proposed Attention-guided Feature Distillation (AttnFD) method, employs the Convolutional Block Attention Module (CBAM)<n>It achieves state-of-the-art results in terms of improving the mean Intersection over Union (mIoU) of the student network on the PascalVoc 2012, Cityscapes, COCO, and CamVid datasets.
arXiv Detail & Related papers (2024-03-08T16:57:47Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.