論文の概要: Nonparametric Teaching for Graph Property Learners
- arxiv url: http://arxiv.org/abs/2505.14170v2
- Date: Wed, 21 May 2025 07:09:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.624495
- Title: Nonparametric Teaching for Graph Property Learners
- Title(参考訳): グラフプロパティ学習者のための非パラメトリック教育
- Authors: Chen Zhang, Weixin Bu, Zeyi Ren, Zhengwu Liu, Yik-Chung Wu, Ngai Wong,
- Abstract要約: 本稿では,新しい非パラメトリック教育の観点から学習過程を再解釈するグラフニューラル・インストラクション(GraNT)を提案する。
GraNTは、例の選択を通じて暗黙的に定義された(非パラメトリック)マッピングを教える理論的枠組みを提供する。
グラフ特性学習者が構造認識非パラメトリック学習者と整合性を示すのはこれが初めてである。
- 参考スコア(独自算出の注目度): 21.96981353343662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring properties of graph-structured data, e.g., the solubility of molecules, essentially involves learning the implicit mapping from graphs to their properties. This learning process is often costly for graph property learners like Graph Convolutional Networks (GCNs). To address this, we propose a paradigm called Graph Neural Teaching (GraNT) that reinterprets the learning process through a novel nonparametric teaching perspective. Specifically, the latter offers a theoretical framework for teaching implicitly defined (i.e., nonparametric) mappings via example selection. Such an implicit mapping is realized by a dense set of graph-property pairs, with the GraNT teacher selecting a subset of them to promote faster convergence in GCN training. By analytically examining the impact of graph structure on parameter-based gradient descent during training, and recasting the evolution of GCNs--shaped by parameter updates--through functional gradient descent in nonparametric teaching, we show for the first time that teaching graph property learners (i.e., GCNs) is consistent with teaching structure-aware nonparametric learners. These new findings readily commit GraNT to enhancing learning efficiency of the graph property learner, showing significant reductions in training time for graph-level regression (-36.62%), graph-level classification (-38.19%), node-level regression (-30.97%) and node-level classification (-47.30%), all while maintaining its generalization performance.
- Abstract(参考訳): グラフ構造化データの性質、例えば分子の可溶性は、本質的にグラフからそれらの性質への暗黙のマッピングを学習する。
この学習プロセスは、グラフ畳み込みネットワーク(GCN)のようなグラフプロパティ学習者にとって、しばしばコストがかかる。
そこで本稿では,新しい非パラメトリック教育の観点から学習過程を再解釈するグラフニューラル・トレーニング(GraNT)というパラダイムを提案する。
具体的には、後者は例の選択を通して暗黙的に定義された(非パラメトリック)写像を教える理論的枠組みを提供する。
このような暗黙のマッピングは、グラフプロパティペアの密集したセットによって実現され、GraNT教師は、GCNトレーニングにおけるより高速な収束を促進するために、そのサブセットを選択する。
学習中のグラフ構造がパラメータベースの勾配降下に与える影響を解析的に検討し、パラメータ更新によって形づくられたGCNsの進化を再キャストすることにより、非パラメトリックな授業における機能的勾配降下を通して、グラフプロパティ学習者(すなわちGCNs)が、構造を意識した非パラメトリックな学習者と整合性を示す。
グラフレベルの回帰(-36.62%)、グラフレベルの回帰(-38.19%)、ノードレベルの回帰(-30.97%)、ノードレベルの回帰(-47.30%)のトレーニング時間を大幅に短縮した。
関連論文リスト
- Community-Centric Graph Unlearning [10.906555492206959]
我々は、新しいグラフ構造マッピング・アンラーニング・パラダイム(GSMU)と、それに基づく新しい手法CGE(Community-centric Graph Eraser)を提案する。
CGEは、コミュニティのサブグラフをノードにマッピングすることで、少ないマップ付きグラフ内でノードレベルの未学習操作の再構築を可能にする。
論文 参考訳(メタデータ) (2024-08-19T05:37:35Z) - Knowledge Probing for Graph Representation Learning [12.960185655357495]
グラフ表現学習において,グラフ学習手法のファミリーが異なるレベルの知識を符号化したかどうかを調査・解釈するための新しいグラフ探索フレームワーク(GraphProbe)を提案する。
グラフの固有の性質に基づいて,異なる視点からグラフ表現学習過程を体系的に研究する3つのプローブを設計する。
本研究では、ランダムウォークに基づく9つの代表的なグラフ学習手法、基本グラフニューラルネットワーク、自己教師付きグラフ手法を用いて、詳細な評価ベンチマークを構築し、ノード分類、リンク予測、グラフ分類のための6つのベンチマークデータセットでそれらを探索する。
論文 参考訳(メタデータ) (2024-08-07T16:27:45Z) - Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
本稿では,新しいGNNアーキテクチャであるGraph Attention with Structures (GRASS)を紹介する。
GRASSはランダムな正規グラフを重畳して入力グラフをリワイヤし、長距離情報伝搬を実現する。
また、グラフ構造化データに適した新しい付加的注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-08T06:21:56Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。